两相步进电机驱动原理及设计
扫描二维码
随时随地手机看文章
二相混合式步进电机是一种混合式电机 。二相混合式步进电机由定子和转子两部分组成。常见的定子有8个极或4个极,极面上均匀分布一定数量的小齿;极上线圈能以两个方向通电。它的转子也由圆周上均布一定数量小齿的两块齿片等组成。这两块齿片相互错开半个齿距。两块齿片中间夹有一只轴向充磁的环形永久磁钢。显然,同一段转子片上的所有齿都具有相同极性,而两块不同段的转子片的极性相反。
步进电机是将电脉冲信号,转变为角位移或线位移的开环控制电机,又称为脉冲电机。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。当步进驱动器接收到一个脉冲信号时,它就可以驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”。
步进电机的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率,来控制电机转动的速度和加速度,从而达到调速的目的。步进电机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。步进电机工作时的位置和速度信号不反馈给控制系统,如果电机工作时的位置和速度信号反馈给控制系统,那么它就属于伺服电机。相对于伺服电机,步进电机的控制相对简单,但不适用于精度要求较高的场合。
混合式步进电机由定子和转子两部分组成。常见的定子有8个极或4个极,极面上均匀分布一定数量的小齿;极上线圈能以两个方向通电,形成A相和万相,B相和B相。它的转子也由圆周上均布一定数量小齿的两块齿片等组成。这两块齿片相互错开半个齿距。两块齿片中间夹有一只轴向充磁的环形永久磁钢。显然,同一段转子片上的所有齿都具有相同极性,而两块不同段的转子片的极性相反。混合式步进电机的结构图如图3-1.图3-2是四相混合式步进电机以圆周展开的剖面模型。图3-2上图是转子S极所出的剖面图,图3-2下图是N极剖面图。图3-2中,定子齿距和转子齿距相同。先考虑磁极I和磁极IB下面的磁场。定子线圈通电后,磁极I产生N极,磁极m产生S极 。
因为N极这段的转子齿和S极转子齿相互错开半个齿距,所以,仅靠定子电流磁场并不能向磁阻式电机那样产生有意义的转矩。但是,把永久磁钢产生的磁场叠加上去,情况就不一样了。因为磁极I下面的两冷磁场相互增强,因此产生向左的驱动力;而磁极m下面的两个分量相互抵消,向右的力大大削弱。再看图3-2下图,磁极m下面的定子磁场和转子磁场方向相同,磁极I下面的磁场方向相反,最终得到向左的合力。转子在驱动力的作用下将转过工齿距,驱动力降为零,达到平衡位置。如果切断磁极I、III的激磁,同时向磁极II , IV上的线圈通入电流,分别产生S极和N极。转子将向左再走一步。按照特定的时序激磁,如A-B -A -B-A-"',电机就能沿逆时针方向连续旋转。改变激磁时序,以A-B-A-B-A-…激磁,电机将沿顺时针方向连续旋转。
在驱动步进电机时,需要进行Decay(电流衰减)控制。
Decay是一种在关断对电机的电源供给时使电流衰减的方法,有Slow Decay(慢速衰减)和Fast Decay(快速衰减)两种基本方法。
以下是上一篇中给出的步进电机驱动波形中的一部分。输出电压OUT是PWM信号,因此输出电流是与PWM信号联动ON/OFF的平均电流。由于驱动的是线圈,所以输出电流的波形是锯齿波,而不是PWM电压输出的方波。下图是输出电流的放大波形。
蓝色波形是Slow Decay时的波形,由于衰减的斜率小,故电流衰减速度慢,PWM关断期间的电流衰减也较慢。因此,在导通时达到设定电流值的时间也缩短了。
红色是Fast Decay时的波形,由于斜率较大,因此电流衰减速度快,衰减量也很大,也因此在导通时需要花一些时间才能达到设定的电流值,周期比Slow Decay要慢。
Slow Decay和Fast Decay:方法的差异
可以通过切换电机驱动器输出H桥来选择衰减方法。
图中的线圈表示步进电机的线圈A和线圈B的一个线圈。这里省略了不在H桥四个开关的内部电流路径中的开关。
在Slow Decay(a)中,Q1和Q4处于导通状态。在(b)和(c)中,Q4导通,Q2导通和关断。尽管开关的状态不同,但由于再生电流也会经由寄生二极管流向关断的Q2的MOSFET,因此无论在哪种情况下,电流都以相同的方式流过。再生电流则仅是线圈中蓄积的电流流动。
(D)Fast Decay的(d)处于导通状态,与Slow Decay的状态相同。在(e)中,Q2和Q3导通;在(f)中,所有的MOSFET均关断,再生电流流经导通的Q2和Q3,也会经由寄生二极管流过关断的Q2和Q3,因此在这两种情况下电流都以相同的方式流过。电流会流向电源,但由于电源电压试图使电流沿相反方向流动,所以电流的衰减加快。
可以根据以哪种状态控制关断来区分使用“Slow Decay”和“Fast Decay”。
衰减方法的差异与步进电机驱动的关系
与Fast Decay相比,Slow Decay的电流纹波更小,因此噪声更小。另外,由于平均电流增加,所以可以增加产生的转矩。但其缺点是如果脉冲频率变快,波形会失真,电机无法正常旋转。
相反,Fast Decay在噪声和转矩方面虽然逊色,但对于高速脉冲频率,则比Slow Decay更具优势。
什么是Mix Decay(混合衰减)?
衰减方法基本上是Slow Decay和Fast Decay,不过还有一种将它们结合起来并充分利用两者优点的方法,即Mix Decay。
Mix Decay是以Fast Decay开始衰减,然后是Slow Decay。这使得电流衰减比Slow Decay快,而电流纹波比Fast Decay小。这不仅可以维持大转矩,同时还支持高速脉冲率。某些驱动器IC可以调整Slow和Fast的时间比,可优化电流波形。