当前位置:首页 > 厂商动态 > 亚马逊云科技
[导读]早在1957年,莱杰伦·希勒和伦纳德·艾萨克森就完成了历史上第一支由计算机创作的弦乐四重奏《伊利亚克组曲》。而生成式AI真正走向产业化发展则是在2022年。这一年,Stability AI获得超过一亿美元的融资,估值突破十亿美元,并选择亚马逊云科技作为首选云供应商,其提供的开源AI模型Stable Diffusion可以根据用户输入的文字自动生成图片。Stability AI由此成为生成式AI领域第一家独角兽企业。

经过60余年的等待,生成式AI(Generative AI)终于爆发了。

早在1957年,莱杰伦·希勒和伦纳德·艾萨克森就完成了历史上第一支由计算机创作的弦乐四重奏《伊利亚克组曲》。而生成式AI真正走向产业化发展则是在2022年。这一年,Stability AI获得超过一亿美元的融资,估值突破十亿美元,并选择亚马逊云科技作为首选云供应商,其提供的开源AI模型Stable Diffusion可以根据用户输入的文字自动生成图片。Stability AI由此成为生成式AI领域第一家独角兽企业。

Gartner预计,到2025年,大型企业机构对外营销信息中的合成信息比例将从2022年的不到2%上升到30%。

在生成式AI方面,亚马逊云科技已经深耕了很长时间,拥有成熟的生成式AI专属解决方案,既提供经过广泛验证且易于部署的先进AI算法模型,又提供丰富且高性价比的云端资源以优化成本,旨在帮助游戏、电商、媒体、影视、广告、传媒等行业快速构建生成式AI应用通路,打造AI时代的领先生产力。

“从AI技术发展来看,生成式AI开启了一次范式变迁。大模型、多模态、高算力和海量数据将主导新一轮科技范式的发展,为内容、营销、游戏等行业带来颠覆性创新。”亚马逊云科技大中华区产品部总经理陈晓建表示,“亚马逊云科技广泛而深入的生成式AI专属解决方案,以先进的性能、更优的性价比和全面的服务赋能千行百业,助力各个规模的企业拥抱生成式AI的浪潮。”

降低成本,让生成式AI触手可及

亚马逊云科技认为,目前生成式AI模型主要集中在文本和图片生成,正在逐步渗透到音频和视频内容生成,未来将出现越来越多的跨模态/多模态内容生成。通用大模型更容易引发热议,但对企业而言,针对特定场景的模型在成本和准确度方面都更具优势,也是目前企业主要采用的模型。芯片性能和高质量训练既是生成式AI爆发的基础,也是其实现飞跃式发展的瓶颈。

之前模型的参数量级可能是千级或百万级,但今天拥有十亿百亿级参数的模型比比皆是,下一代模型有可能会朝着万亿级参数级别去发展。因此,降低大模型的成本至关重要。

虽然,机器学习的芯片差不多每两年或每几年就会有一倍或数倍的提升,但仍然不足以跟上训练模型复杂度的提升。替代的解决办法就是利用分布式多处理器,通过一个网络进行协同计算、协同训练。亚马逊云科技专门为云中高性能模型训练而搭建的Trn1实例最多可以搭载16颗专门用于机器学习训练的Trainium芯片,512GB加速器内存和800GBps的网络带宽。

Trn1是拥有高性价比的深度学习实例,与基于GPU的类似实例相比,训练成本降低了50%。以一个具备万亿级参数的大模型进行两周训练为例,GPU服务器P3dn需要600个实例,最新一代GPU实例P4d需要128个实例,但Trn1只需要用96个实例。

2022亚马逊云科技re:Invent全球大会推出了一款基于Trn1的网络优化型实例Trn1n,进一步把网络带宽增加一倍,从800GBps跃升到1600GBps,其强大的网络吞吐能力能够将超过1万个Trainium芯片构建在一个超大规模集群里,并在集群中进行模型的并行训练。

除训练外,大模型也需要超高的推理能力。所以亚马逊云科技构建了Inf1实例,用自研的推理芯片Inferentia提供支持,实现低延时低成本的推理。Inf1实例和GPU的实例相比,每次推理成本可以降低70%。

亚马逊云科技re:Invent全球大会还推出了下一代自研推理芯片Inferentia2以及基于此的Amazon EC2 Inf2实例。这是唯一一个专门为大型Transformer模型分布式推理建立的实例。与Inf1实例相比,它提供高达4倍的吞吐量,降低多达10倍的延迟,与基于GPU的实例相比,每瓦性能提升高达45%,同时也支持诸如GPT类型的大型复杂模型,并且可以用单实例实现1750亿参数模型的推理。

行业先行者的最佳实践

以AI绘画走红全球的Stability AI备受瞩目,其开源AI模型Stable Diffusion自2022年8月推出以来,已经被全球超过20万开发者下载和授权。在算力需求方面,Stable Diffusion模型所需的算力硬件成本已超过5000万美元。

Stability AI利用亚马逊云科技上的大规模GPU集群和Amazon Trainium机器学习训练芯片组成的高性能计算集群来训练其生成式AI基础模型,并通过云上模型训练的弹性来优化成本,最终将其使用的GPT-NeoX等开源语言模型的训练时间和成本减少58%。

Qualtrics是一家设计和开发体验管理软件的公司。“Qualtrics的重点是借助技术创新缩小体验差距。为实现这一目标,我们正在开发复杂的多任务、多模态的深度学习模型,包括文本分类、序列标记、话语分析、关键短语提取、主题提取、聚类以及端到端对话理解等。”Qualtrics 核心机器学习负责人 Aaron Colak 表示,“随着我们在更多应用程序中使用这些复杂的模型以及非结构化数据量不断增长,为给客户提供最佳体验,我们需要像Inf2 实例这样性能更高的推理优化解决方案来满足我们的需求。我们很高兴看到新一代 Inf2 实例的推出,它不仅让我们实现更高的吞吐量,显著降低延迟,而且还引入了分布式推理和支持增强的动态形状输入等功能。随着我们部署更大、更复杂的模型,这将能进一步满足我们对部署的更高要求。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭