当前位置:首页 > 智能硬件 > 智能硬件
[导读]ARM公司是专门从事基于RISC技术芯片设计开发 的公司,作为知识产权供应商,本身不直接从事芯片生产,而是转让设计许可 ,由合作公司生产各具特色的芯片。ARM处理器的内核是统一的 ,由ARM公司提供,而片内部件则是多样的 ,由各大半导体公司设计,这使得ARM设计嵌入式系统的时候,可以基于同样的核心,使用不同的片内外设 ,从而具有很大的优势。

ARM公司是专门从事基于RISC技术芯片设计开发 的公司,作为知识产权供应商,本身不直接从事芯片生产,而是转让设计许可 ,由合作公司生产各具特色的芯片。ARM处理器的内核是统一的 ,由ARM公司提供,而片内部件则是多样的 ,由各大半导体公司设计,这使得ARM设计嵌入式系统的时候,可以基于同样的核心,使用不同的片内外设 ,从而具有很大的优势。

ARM架构自诞生至今,已经发生了很大的演变,至今已定义了7种不同的版本:

V1版架构:该架构只在原型机ARM1出现过,其基本性能包括基本的数据处理指令(无乘法)、字节、半字和字的Load/Store指令、转移指令,包括子程序调用及链接指令、软件中断指令、寻址空间64MB。

V2版架构:该版架构对V1版进行了扩展,如ARM2与ARM3(V2a版)架构,增加的功能包括乘法和乘加指令、支持协处理器操作指令、快速中断模式、SWP/SWPB的最基本存储器与寄存器交换指令、寻址空间64MB。

V3版架构:该版对ARM体系结构作了较大的改动,把寻址空间增至32位(4GB),增加了当前程序状态寄存器CPSR和程序状态保存寄存器 SPSR以便于异常处理。增加了中止和未定义2种处理器模式。ARM6就采用该版结构。指令集变化包括增加了MRS/MSR指令,以访问新增的CPSR /SPSR寄存器、增加了从异常处理返回的指令功能。

V4版架构:V4版结构是目前最广泛应用的ARM体系结构,对V3版架构进行了进一步扩充,有的还引进了16位的Thumb指令集,使ARM使用更加灵活。ARM7、ARM9和StrongARM都采用了该版结构。其指令集中增加的功能包括符号化和非符号化半字及符号化字节的存/取指令、增加了16 位Thumb指令集、完善了软件中断SWI指令的功能、处理器系统模式引进特权方式时使用用户寄存器操作、把一些未使用的指令空间捕捉为未定义指令。

V5版架构:在V4版基础上增加了一些新的指令。ARM10和XScale都采用该版架构。这些新增指令有带有链接和交换的转移BLX指令、计数前导零计数CLZ指令、BRK中断指令、增加了信号处理指令(V5TE版)、为协处理器增加更多可选择的指令。

V6版架构:ARM体系架构V6是2001年发布的。基本特点包括100%与以前的体系兼容、SIMD媒体扩展,使媒体处理速度快1.75倍、改进了的内存管理,使系统性能提高30%、改进了的混合端(Endian)与不对齐数据支持,使得小端系统支持大端数据(如TCP/IP),许多RTOS是小端的、为实时系统改进了中断响应时间,将最坏情况下的35周期改进到了11个周期。

V7版架构:ARM体系架构V7是2005年发布的。它使用了能够带来更高性能、功耗效率和代码密度的Thumb-2技术。它首次采用了强大的信号处理扩展集,对H.264和MP3等媒体编解码提供加速。Cortex-M3处理器采用的就是V7版的结构。

ARM芯片的核心,即CPU内核(ARM720T)由一个ARMTTDMI 32位RISC处理器、一个单一的高速缓冲8KB Cache和一个存储空间管理单元(MMU)所构成。8KB的高速缓冲有一个四路相连寄存器,并被组织成5\2线四字(4×5\2×4字节)。高速缓冲直接与ARMTTDMI相连,因而高速缓冲来自CPU的虚拟地址。当所需的虚拟地址不在高速缓冲中时,由MMU将虚拟地址转换为物理地址。一个64项的转换旁路缓冲器(TLB)用来加速地址转换过程,并减少页表读取所需的总线传送。通过转换高速缓冲中未存储的地址,MMU就能够节约功率。通过内部数据总线和扩展并行总线,ARM可以和存储器(SRAM/Flash/Nand-Flash等)、用户接口(LCD控制器/键盘/GPIO等)、串行口(UARTs/红外IrDA等)相连。

ARM架构已经主导了当今嵌入式处理和计算市场,但在过去的几十年里,Arm 架构却走过了漫长的道路。从20世纪80年代开始,它起初是作为家用电脑处理器,然后在20世纪90年代成为手机芯片的基础。如今,在几乎所有技术细分市场,Arm都是一个强有力的竞争者。许多人认为,Arm 架构已成为 32 位或 64 位处理器的首选。由于这种广泛应用,现在已经有成千上万种基于Arm架构的变体。了解这些内核彼此之间的不同是做出选择决策的重要一环。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭