人工智能有哪些优缺点?人工智能有哪些应用领域?
扫描二维码
随时随地手机看文章
人工智能是现今的发展主力,也是未来的发展主流。为增进大家对人工智能的认识,本文将对人工智能的优点、人工智能的缺点,以及人工智能的应用领域予以介绍。如果你对人工智能具有兴趣,不妨和小编一起来继续往下阅读哦。
一、人工智能优缺点
1、人工智能优势
人工智能主要用于解决复杂的问题。由于汽车行业存在许多难题,人工智能在推进汽车技术方面发挥着越来越重要的作用。部署自动驾驶汽车的承诺主要取决于新的人工智能技术。似乎几乎达成共识,神经网络的进步是实现未来 AV 部署成功的主要方法。
好消息是人工智能,尤其是神经网络技术还处于研发阶段。这意味着未来的进步将领先于预期的突破性创新。随着全球范围内持续广泛的人工智能投资,人工智能和神经网络将解决许多更复杂的问题,包括汽车行业的挑战,这是一个不错的选择。
2、人工智能的缺点
开发和部署人工智能技术的挑战之一是对神经网络的充分训练。一般来说,问题越复杂,神经网络模型就必须越复杂。这意味着大型模型。培训需要大量资源和专业知识来设计和测试依赖大型数据集的 AI 模型,以验证模型是否像宣传的那样工作。
AI 模型需要大量训练,这意味着需要获取大型数据库。更大的训练数据集变得可用,但训练仍然是一项耗时且昂贵的任务。大多数训练数据也必须由人类标记,以使 AI 模型能够学习并变得熟练。人们越来越担心偏见正在蔓延到训练数据中。
然后是黑盒问题:仍然很难确定 AI 模型如何做出决策。对于自治系统来说,这种模糊性仍然是一个大问题。需要更好的解决方案。
另一个问题涉及模型对微小数据变化的敏感性。该漏洞引发了安全问题,包括入侵自主系统的可能性以及由此产生的对 AV 安全的威胁。
缺乏人工智能专业知识是汽车和其他行业的另一个重大缺陷,这种技能差距不太可能很快得到弥补。
解决问题的推理阶段也有缺点。大型模型,尤其是 AV 模型,需要巨大的计算资源来处理传感器数据并支持复杂的软件。这些资源还需要电力,这在汽车应用中总是有限的。
新兴技术将提高能力并降低推理成本,包括新兴的人工智能芯片技术、激光雷达价格的下降和传感器性能的提高。
推理的最大缺点是黑盒问题或 AI 可解释性。人工智能系统仍然无法解释它们是如何做出决策的,从而产生了许多人工智能信任问题。对于汽车应用来说,这是行不通的。(我将在以后的专栏中探讨有关 AI 可解释性的问题。)
二、人工智能应用领域
1、问题求解
人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。
2、逻辑推理
逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
3、自然语言处理
自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
以上就是小编这次想要和大家分享的有关人工智能的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。