无人驾驶技术的原理是什么?
扫描二维码
随时随地手机看文章
无人驾驶技术是传感器、计算机、人工智能、通信、导航定位、模式识别、机器视觉、智能控制等多门前沿学科的综合体。
无人驾驶汽车,又称自动驾驶汽车或轮式移动机器人,是一种运输动力的无人地面载具。我们理想的无人驾驶汽车是无需人类操作即能从地点A行驶到地点B,不管途中环境多复杂天气多恶劣都由机器自己完成。无人驾驶汽车的核心在于无人驾驶技术,如果说汽车工业是制造业的皇冠,那么无人驾驶技术就是皇冠上的明珠。
无人驾驶汽车需要多门技术整合才能实现,它并非是一项单一的新技术,其中包括雷达、激光雷达、摄像头、GPS、计算机视觉、决策系统、操作系统、高精地图、实时定位、机械控制、能耗散热管理等等。尽管无人驾驶汽车看起来很科幻,但实际上梦想正在照进现实。
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标。
据汤森路透知识产权与科技最新报告显示,2010年到 2015年间,与汽车无人驾驶技术相关的发明专利超过22,000件,并且在此过程中,部分企业已崭露头角,成为该领域的行业领导者。
如同其他很多事物一样,无人驾驶实际上也有一个技术循序渐进发展的过程。无人驾驶也需分为不同阶段。
阶段一:辅助驾驶阶段。车道保持、自适应巡航等辅助驾驶功能,均属于这个阶段的技术,不过驾驶员仍旧是操作主体。
阶段二:半自动驾驶。在这个阶段中,电脑操纵下的自动驾驶已经可以完成前往目的地的过程,其可作为备用系统完成行驶,但受限于法律法规等因素,其仍旧不能作为整个驾驶行为的主体存在。
阶段三:全自动驾驶。技术、成本、法衡去规等因素都不再成为影响普及的因素,电脑控制的系统已经作为驾驶主体而存在,驾驶员也可以随时接管操作系统。
由于技术和法规等的限制,目前的无人驾骆气车大多处于第=阶段。当前主流的无人驾驶汽车技术有激光雷达式和摄像头+测距雷达式两种。
1、激光雷达式
自上世纪80年代DARPA的ALV项目以来,我们看到的大多数现代自动驾驶原型车上都布满了传感器,并且头顶着一台激光雷达。车辆使用传感器的探测以及激光雷达的三维立体扫描来“感知”周围的世界,而车载控制计算机则像人类大脑一样决定需要进行的操作。Google的无人驾驶汽车就是激光雷达应用的典型代表。
Google算得上是最早跨界进行自动驾驶汽车研发的互联网公司,同时依托着自己独有的地图和大数据计算资源,在这一领域具有领先的优势。由于自身有着地图和街景这样先天的优势,Google自动驾驶车辆使用一台由Velodyne公司提供的64位三维激光雷达将周围环境绘制成一幅3D地图,并与Google的高精度地图相结合,利用计算机以及云端网络进行大数据处理,最终实现自动驾驶功能:
早期的丰田普锐斯原型车搭载了视频摄像头、激光雷达、位置传感器和测距雷达几种传感装置。其中视频摄像头用来判断交通信号灯以及任何移动的物体;激光雷达用于形成真实道路环境的3D地图;测距雷达用于探测车辆周围的障碍物,一旦有物体接近,车辆将自动减速;位于左后轮处的位置传感器用来侦测和估算车辆的侧向位置偏移,以判断车辆在地图上的位置。
在经过多年的试验后,Google推出了自己的无人驾驶原型车。这台原型车上同样搭载了诸多雷达及传感器,以及耸立在车顶上的激光雷达。Google的无人驾驶汽车已经取消了方向盘,汽车完全靠车载计算机进行操控,是目前最接近无人驾驶概念的汽车。
2、摄像头+测距雷达式
奔驰公司在80年代就开始研发无人驾驶技术,在2013年其研发的无人驾驶汽车成功的从斯图加特行驶到法兰克福,行驶里程约100 km。该无人驾驶汽车是在并没有采用激光雷达,而是采用摄像机+测距雷达的组合实现了对周围环境的监测。page_break]
车头两侧的长距雷达可以更早地发现远处的路口;另外的长距雷达监控着车辆前后的交通路况;车身四角的四个短距雷达可迅速侦测到车辆周围的事物以及其他车辆;车前风挡处的摄像机负责识别交通标识,后风挡处的摄像机拍摄街景,通过与导航系统中的地形特点比对和辨别来确定车辆的精确位置。这辆无人驾驶汽车的立体摄像机也进行了相应的改进,从而可以进一步提升探测距离。尽管是一台真正的自动驾驶车辆,但还保留了传统汽车的完整的操作方式。与Google自动驾驶车辆类似,它对于路面障碍的侦测完全来自车辆自身的传感装置。不过,奔驰使用了更加成熟的摄像头组合代替了激光雷达,因此在成本上更容易进行控制,同时也不会破坏现有车辆的外观质感。
奔驰在2015年又推出了新能源自动驾驶概念车F015。奔驰F015概念车利用立体摄像头、雷达以及超声波传感器来获取车辆四周的环境数据,来为自动驾驶提供大量的参考信息。高精度GPS配合三维导航地图,可以确保车辆定位精度达到厘米级别。
专家介绍说,车身安装的传感器,就是它的“眼睛”,能360度感知路上物体的远近深浅,常见的传感器有激光雷达、毫米波雷达、摄像头、超声波雷达及组合导航模块等。无人车的“大脑”就是车辆的控制技术,能根据实时感知的环境信息、高精度地图,实现最优路径规划,预测周边车辆和行人的行为和意图。在交规和路况允许下,无人驾驶汽车会按照最高时速行驶,以提高行驶效率。
百度深度学习实验室主任林元庆介绍说,百度无人驾驶汽车是利用人工智能,通过使用摄像机、激光雷达、毫米波雷达和GPS等系统来感知周围环境,决定最优行车路线,实现无人工干预的全自动驾驶。
“百度无人驾驶汽车的核心技术是百度汽车大脑,它可为汽车提供自动驾驶整体解决方案。”林元庆说,这些技术包含计算机视觉、高精度地图与定位、多传感器融合、智能决策规划等,运用于汽车启动、行驶和停车的整个过程。比如,当前方有减速车辆时,智能决策系统将依据周边的环境状况,合理地决策减速尾随或变道超车。汽车“大脑”也能够不断学习人类的驾驶经验,不断提升自身的“智商”,以保证安全、舒适、便捷的自动驾驶体验。
专家认为,无人驾驶技术或自动驾驶技术的出现,依靠的是人工智能技术的突破,因此也和人工智能一样,受益于海量数据、超强计算和优秀算法。
人工智能技术突破的一个重要原因就是海量数据的积累,为训练深度学习算法提供了所需的材料。无人驾驶汽车也是通过大量数据的训练,不断提升其智能水平。无人车搭载了各种类型的传感器,单车每小时大约产生100GB的数据。如果按照万台车辆计算,每天将会有数十PB的数据被收集到云平台上,用于训练自动驾驶系统。无人车所使用的高精度地图每公里道路的原始数据量也将是传统地图的10万倍,数据的快速积累推动着汽车智能的不断突破。
超强计算能力方面,伴随着云计算和车载计算机计算能力的不断提升,车载计算机系统能在更短的时间内处理更复杂的任务,实现自动驾驶实时感知路况、智能决策和控制。而随着机器学习、深度学习等优秀算法的出现和广泛应用,人工智能在2013年后进入了快速发展的新阶段。应用到自动驾驶领域,在权威评测中,2015年使用深度学习方法的车辆识别错误率要比2013年采用的传统方法下降了69%。
无人驾驶汽车技术原理是通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。
它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。