如何实现模糊传感器?研究模糊传感器有什么意义?
扫描二维码
随时随地手机看文章
传感器有很多分类,比如振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器等等。为增进大家对传感器的认识,本文将对模糊传感器的实现方法、模糊传感器的研究意义予以介绍。如果你对传感器具有兴趣,不妨继续往下阅读哦。
一、模糊传感器及其实现方法
模糊传感器是在经典传感器数值测量的基础上,经过模糊推理与知识集成,以自然语言符号描述的形式输出测量结果的智能传感器。
模糊传感器是在20世纪80年代末出现的术语。随着模糊理论技术的发展,模糊传感器也得到了国内外学者们的广泛关注。模糊传感器是在经典传感器数值测量的基础上,经过模糊推理与知识集成,以自然语言符号描述的形式输出测量结果的智能传感器。一般认为,模糊传感器是以数值量为基础,能产生和处理与其相关测量的符号信息的传感器件。
要实现模糊传感器就在于寻找测量数值与模糊语言之间的变换方法,即数值的模糊化,来生成相应的语言概念。所谓语言概念生成就是要定义一个模糊语言映射作为数值域到语言域的模糊关系,从而将数值域中的数值量映射到符号域上,以实现模糊传感器的功能。这里的语言值用模糊集合来表示,模糊集合则由论域和隶属函数构成。因此模糊语言映射就是要求取相应语言概念所对应数值域上的模糊隶属函数。如何进行概念生成是实现模糊传感器的关键。有很多方法可以实现模糊传感器的功能。
国外很多学者对模糊传感器的实现方法进行过讨论,这里简要介绍几种:
Foulloy算法简介:模糊传感器设计的实质是模糊变换算法的设计,即参考集的选择与模糊量化。其过程是首先根据专家或熟练工人的知识和经验获取相应测量领域的一级数值/语言变换策略,然后应用模糊推理方法求取相应隶属函数。Foulloy提出了基于语义关系的概念生成方法,首先,由论域的意义来定义一个通用的概念,称属概念,使之对应数值域中论域上的主要区间,然后在此基础上定义新概念,以产生其它语义值及其意义,新概念通过语言修正器内部自动生成。Foulloy还提出了基于已知点集通过内插方法实现的模糊状态传感器,每一学习点通过Delaunay三角法在测量空间的笛卡尔积上构造模糊分割,三角法用于建立与过程状态相关的符号的模糊意义。
Benoit E等人讨论了使用符号信息时,符号语义与被测量信息在特定任务环境下的关系,认为模糊传感器必须根据测量关系来构造,并且应该可以重组以适应不同的测量关系。并提出了将基础概念作为先验信息提供给传感器,其余概念由运算自动生成的设计思想。这种方法保留了概念之间的相对语义,但不能保证与测量关系符号说明的一致性,因此必须考虑环境对测量关系的修正问题,他提出了基于定性学习以及通过复合调节说明的函数方法来进行修正。他提出了基于Delaunay多维空间的三角测量的线性插值来构造模糊分割的新方法,用以建立采用多元件测量的模糊传感器。
STIpanicer D等人认为模糊传感器是一种智能测量设备,由简单选择的传感器和推理器组成,将被测量转换为适于人类感知和理解的信号。由于知识库中存储了丰富的专家知识和经验,它可以通过简单、廉价的传感器测量相当复杂的现象。
二、模糊传感器研究意义
传统的传感器是数值传感器,它将被测量映射到实数集中,以数值符号来描述被测量状态,即对被测对象给以定量的描述。这种方法既精确又严谨,还可以给出许多定量的算术表达式,但随着测量领域的不断扩大与深化,由于被测对象的多维性,被分析问题的复杂性或信息的直接获取、存储方面的困难等等原因,只进行单纯的数值测量且对测量结果以数值符号来描述,这样做有很大缺陷,例如:
(1)某些信息难以用数值符号来描述。例如在产品质量评定中,人们常用的是“优”、“次优”、“合格”、“不合格”,也可用数字1,2,3,4来描述,但数字在这里已失去通常的测量值的意义,它仅作为一个符号,不能来表征被测实体的具体特征。
(2)很多数值化的测量结果不易理解。如在测量人体血压时,人们更关注的是:老年人的血压是否正常,青年人的血压是否偏高。而实测的数据往往不能被普通人读懂,因而满足不了人们的需求。
因此,有待用新的测量理论和方法来补充。模糊传感器正是顺应人类的生活实践、生产与科学实践的需要而提出的。
以上就是小编这次想要和大家分享的有关传感器的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。