OLED显示屏具有哪些技术及特点是什么?
扫描二维码
随时随地手机看文章
Oled透明显示屏已开始大规模推广。OLED显示器在所有方面均优于其他显示器,尤其是在黑色方面。OLED显示器处于完全黑暗的状态。它可以显示纯黑色状态,但其他显示器则无法达到此效果。主要原因是,OLED显示屏具有自发光的优势,与背光照明的LCD显示器不同,因此LCD透明显示器不仅厚而且无法显示全黑状态。下面我们就来看看oled显示屏的优势吧。
OLED(Organic Light-Emitting Diode),又称为有机电激光显示、有机发光半导体(Organic Electroluminescence Display,OLED)。OLED属于一种电流型的有机发光器件,是通过载流子的注入和复合而致发光的现象,发光强度与注入的电流成正比。OLED在电场的作用下,阳极产生的空穴和阴极产生的电子就会发生移动,分别向空穴传输层和电子传输层注入,迁移到发光层。当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。 [1] 2022年,韩国在有机发光二极管(OLED)显示领域占有率为81.3%。 [11] 2023年5月,三星展示了一款具有革命性的 12.4 英寸可卷曲 OLED 面板。
Oled显示屏的优势有哪些
1.能够在不同材质的基板上制造,可以做成能弯曲的柔软显示器
2.发光效率更高,能耗比LCD要低
3.制造工艺简单,成本更低
4.低温特性好,在零下40度时仍能正常显示,而LCD则无法做到
5.响应时间是LCD的千分之一,显示运动画面绝对不会有拖影的现象
6.几乎没有可视角度的问题,即使在很大的视角下观看,画面仍然不失真
7.固态机构,没有液体物质,因此抗震性能更好,不怕摔
8.厚度可以小于1毫米,仅为LCD屏幕的1/3,并且重量也更轻
OLED显示器是一种由有机分子薄片组成的固态设备,施加电力之后就能发光。OLED能让电子设备产生更明亮、更清晰的图像,其耗电量小于传统的传统的LED显示屏。
OLED显示屏的优点
优点:
1.相较于LED或LCD的晶体层,OLED的有机塑料层更薄、更轻而且更富于柔韧性。
2.OLED的发光层比较轻,因此它的基层可使用富于柔韧性的材料,而不会使用刚性材料。OLED基层为塑料材质,而LED和LCD则使用玻璃基层。
3.OLED比LED更亮。OLED有机层要比LED中与之对应的无机晶体层薄很多,因而OLED的导电层和发射层可以采用多层结构。此外,LED和LCD需要用玻璃作为支撑物,而玻璃会吸收一部分光线。OLED则无需使用玻璃。
4.OLED并不需要采用LCD中的逆光系统(请查阅LCD(液晶显示)工作原理)。LCD工作时会选择性地阻挡某些逆光区域,从而让图像显现出来,而OLED则是靠自身发光。因为OLED不需逆光系统,所以它们的耗电量小于LCD(LCD所耗电量中的大部分用于逆光系统)。这一点对于靠电池供电的设备(例如移动电话)来说,尤其重要。
5.OLED制造起来更加容易,还可制成较大的尺寸。OLED为塑胶材质,因此可以将其制作成大面积薄片状。而想要使用如此之多的晶体并把它们铺平,则要困难得多。
6.OLED的视野范围很广,可达170度左右。而LCD工作时要阻挡光线,因而在某些角度上存在天然的观测障碍。OLED自身能够发光,所以视域范围也要宽很多。
基层(透明塑料,玻璃,金属箔)——基层用来支撑整个OLED。
阳极(透明)——阳极在电流流过设备时消除电子(增加电子“空穴”)。
有机层——有机层由有机物分子或有机聚合物构成。
导电层——该层由有机塑料分子构成,这些分子传输由阳极而来的“空穴”。可采用聚苯胺作为OLED的导电聚合物。
发射层——该层由有机塑料分子(不同于导电层)构成,这些分子传输从阴极而来的电子;发光过程在这一层进行。可采用聚芴作为发射层聚合物。
阴极(可以是透明的,也可以不透明,视OLED类型而定)——当设备内有电流流通时,阴极会将电子注入电路。
OLED显示屏的特点
OLED为自发光材料,不需用到背光板,同时视角广、画质均匀、反应速度快、较易彩色化、用简单驱动电路即可达到发光、制程简单、可制作成挠曲式面板,符合轻薄短小的原则,应用范围属于中小尺寸面板。
显示方面:主动发光、视角范围大;响应速度快,图像稳定;亮度高、色彩丰富、分辨率高。
工作条件:驱动电压低、能耗低,可与太阳能电池、集成电路等相匹配。
适应性广:采用玻璃衬底可实现大面积平板显示;如用柔性材料做衬底,能制成可折叠的显示器。由于OLED是全固态、非真空器件,具有抗震荡、耐低温(-40℃)等特性,在军事方面也有十分重要的应用,如用作坦克、飞机等现代化武器的显示终端。
OLED显示器的发光过程
1、OLED设备的电池或电源会在OLED两端施加一个电压。
2、电流从阴极流向阳极,并经过有机层(电流指电子的流动)。
阴极向有机分子发射层输出电子。
阳极吸收从有机分子传导层传来的电子。(这可以视为阳极向传导层输出空穴,两者效果相等。)
3、在发射层和传导层的交界处,电子会与空穴结合。
电子遇到空穴时,会填充空穴(它会落入缺失电子的原子中的某个能级)。
OLED,即有机发光二极管OLED(Organic Light-Emitting Diode),又称为有机电激光显示(OrganicElectroluminesence Display, OELD)。因为具备轻薄、省电等特性,因此从2003年开始,这种显示设备在MP3播放器上得到了广泛应用,而对于同属数码类产品的DC 与手机,此前只是在一些展会上展示过采用OLED屏幕的工程样品,还并未走入实际应用的阶段。但OLED屏幕却具备了许多LCD不可比拟的优势,因此它也一直被业内人士所看好。
OLED 显示技术的起源
早在 20 世纪60 年代,Pope 等人首次报道了蒽单晶的电致发光现象,揭开了有机发光器件研究的序幕,但由于当时获得的亮度和效率均不理想,而未获得广泛的关注。
1987 年,美国柯达公司邓青云博士等以真空蒸镀法制作出含电子空穴传输层的多层器件,获得了亮度大于1000cd/m2、效率超过1.5 lm/W、驱动电压小于10V 的发光器件,这种器件具有轻薄、低驱动电压、自主发光、宽视角、快速响应等优点,因此得到了广泛的关注。
1990 年,英国剑桥大学Cavendish 研究室的R. H. Friend 等人以旋涂的方法将聚合物材料聚对苯撑乙烯作为发光材料制备发光器件,开创了聚合物在有机发光领域的应用。这项研究进一步促进了有机发光显示器件的研究,应用更加广泛、性能更加优越的器件报道不断涌现。
1993 年曹镛等人的柔性OLED 显示屏和1994 年Kido 等人制备的白光OLED 器件均具有开创性的意义。
1998 年,普林斯顿大学的Forrest 等将磷光材料掺入发光层,获得外量子效率5%的器件。这项研究证明OLED 可突破内量子效率25%的限制,使得有机发光器件的效率有望大幅提高。
2003 年,Novaled 公司制备了PIN 结构的磷光器件,在提高发光效率的同时增强了电荷的注入能力,使得器件的效率大幅提高,同年在SID 会上,索尼和奇美分别推出了24 和20 英寸TFT OLED 样品及柯达推出第一部使用OLED显示器的数码相机。
2004 年5 月,SeicoEpson 在日本展出了40 英寸彩色PLED 面板及三星SDI 展示了小分子OLED 材料蒸镀形成的17 英寸OLED 显示屏;
2005-2006 年,研究焦点集中在高效率白光器件上。柯尼卡美能达技术中心成功开发了初始亮度1000cd/m2、发光效率64lm/W、亮度半衰期约10000 小时的OLED 白色发光组件;
2006 年,韩国三星电子在IMID 大展中,展示了2.4 英寸QVGA 分辨率的AM-OLED 手机屏产品;而台湾奇晶开发出以LTPS TFT 主动式矩阵OLED 技术制成的尺寸达25 英寸的OLED 电视显示器面板;
2007 年初,奇晶光电正式宣告量产AMOLED 产品,并已开始在市场上出售小尺寸(2.0-2.7 英寸)显示器;同年SID 会议上,Sony 展出了技术成熟的11 吋OLED电视。