激光器常见的有哪类型?都有何特点?
扫描二维码
随时随地手机看文章
激光技术已从方方面面走进了人们的生活,但激光器种类繁多,其各自波长不同,特性不同,因此所应用的领域也不同。按工作介质不同,激光器分为固体激光器、气体激光器、染料激光器、半导体激光器、光纤激光器和自由电子激光器6种。其中固体激光器和气体激光器还有很多细分种类。除自由电子激光器外,各种激光器的基本工作原理均相同,包括泵浦源、光学谐振腔和增益介质三部分。
固体激光器,这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:⑴过渡金属离子(如Cr3+);⑵大多数镧系金属离子(如Nd3+、Sm2+、Dy2+等);⑶锕系金属离子(如U3+)。这些掺杂到固体基质中的金属离子的主要特点是:具有比较宽的有效吸收光谱带,比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉(NaAlSi2O6)、钇铝石榴石(Y3Al5,O12)、钨酸钙(CaWO4)、氟化钙(CaF2)等,以及铝酸钇(YAlO3)、铍酸镧(La2Be2O5)等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;具有良好的光谱特性、光学透射率特性和高度的光学(折射率)均匀性;具有适于长期激光运转的物理和化学特性(如热学特性、抗劣化特性、化学稳定性等)。晶体激光器以红宝石(Al2O3:Cr3+)和掺钕钇铝石榴石(简写为YAG:Nd3+)为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。
气体激光器具有结构简单、造价低、操作方便;工作介质均匀、光束质量好,能长时间稳定连续工作等特点也是目前品种最多、应用广泛的一类激光器,占有市场的60%左右。氦氖激光器输出波长632.8纳米,功率约几个毫瓦,采用几千伏高压的电激励,工作电流10-20毫安,可以采用内腔式、外腔式、半外腔式结构的光学谐振腔;CO2激光器输出波长1064纳米,功率一般约10瓦左右。
染料激光器(Dye laser),是使用有机染料作为激光介质的激光,通常是一种液体溶液。相比气体的和固态的激光介质,染料激光器通常可以用于更广泛的波长范围内。由于有宽阔的带宽,使得它们特别适合于可调谐激光器和脉冲激光器。染料激光器是由彼得·索罗金(Peter P. Sorokin)和弗里兹·彼得·薛弗(Fritz Peter Schäfer)(及其同事)在1966年分别独立发现的。除了通常的液体状态,染料激光器也可以作为固态染料激光器(SSDL)。SSDL使用染料掺杂有机介质的作为增益介质。
液体激光器(燃料激光器等),特点:输出波长连续可调,覆盖面宽,但工作原理比较复杂。一般激光泵浦液体激光器输出波长连续可调,覆盖面宽,但工作原理比较复杂。常用的是染料激光器,采用有机染料为工作物质,利用不同的染料可以获得不同波长的激光(在可见光范围内),一般用激光作泵浦源,如氩离子激光器等
半导体激光器( GaAlAs、InGaAs等),半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励。高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励。在半导体激光器件中,性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。
自由电子激光器,是一种新型的强相干辐射源。由于它可能具有高功率、高效率、波长的大范围调谐和超短脉冲的时间结构等一系列优良特性而受到人们的格外重视。目前, 除自由电子激光器之外, 还没有一种激光器能同时具备这些特点。这是因为它产生激光的原理与以往的激光器有本质上的不同。自由电子激光器是利用相对论电子束通过周期磁场将电子束的动能转换为辐射能。
自由电子激光器是七十年代中期以来发展起来的一类新型激光器。它将电子束动能转变成激光辐射, 代表了一种全新的产生相干辐射的概念。自由电子激光器一般由电子加速器、摆动器和光学系统几个部分构成。加速器产生的高能电子束, 通过摆动器内沿长度方向交替变化的磁场时, 产生横向摆动, 并以光子的形式损失一部分能量。这部分能量转变成激光辐射, 通过光学系统输出。