当前位置:首页 > 厂商动态 > ADI
[导读]窗口比较器是一种电路配置,通常由一对电压比较器(反相和同相)组成,其中输出指示输入信号是否在两个不同阈值限定的电压范围内:一个阈值将在检测到某个电压上限VREF(HIGH)时触发运算放大器比较器,另一个阈值则在检测到某个电压下限VREF(LOW)时触发运算放大器比较器。电压水平处于基准电压上限和下限之间的电压称为窗口。

目标

本次实验的目标是使用两个高速电压比较器作为窗口比较器,并采用这种方法对TMP01低功耗可编程温度控制器进行编程。

窗口比较器是一种电路配置,通常由一对电压比较器(反相和同相)组成,其中输出指示输入信号是否在两个不同阈值限定的电压范围内:一个阈值将在检测到某个电压上限VREF(HIGH)时触发运算放大器比较器,另一个阈值则在检测到某个电压下限VREF(LOW)时触发运算放大器比较器。电压水平处于基准电压上限和下限之间的电压称为窗口。

材料

ADALM2000主动学习模块

无焊试验板和跳线套件

两个AD8561比较器

一个2N3904 NPN晶体管

两个1N914小信号二极管

一个LED(任何颜色)

三个10 kΩ电阻

一个20 kΩ电阻

一个470 Ω电阻

窗口比较器

背景知识

请看图1所示的电路。

该电路使用由三个等值电阻组成的分压器网络:R1 = R2 = R3。每个电阻两端的压降将等于基准电压(VREF)的三分之一。因此,基准电压上限(VREF(HIGH))设置为2/3 VREF,下限设置为1/3 VREF。

如果VIN低于电压下限,即VREF(LOW)等于1/3 VREF,此时输出将为高电平,D2将正向偏置。由于NPN晶体管基极为正电压,Q1进入饱和状态。因此,输出电压为零,供电电压在R5和D3上产生压降,从而点亮LED。

当VIN高于此1/3 VREF的电压下限且低于2/3 VREF (VREF(HIGH))时,两个比较器的输出均为低电平,二极管反向偏置。Q1的基极没有电压,晶体管处于截止状态,没有集电极电流流过R6或R5、D3。输出电压为电源电压V+。

如果VIN高于电压上限,即VREF(HIGH)等于2/3 VREF,此时输出将为高电平,D1将正向偏置。由于NPN晶体管基极为正电压,Q1进入饱和状态。因此,输出电压为零,供电电压在R5和D3上产生压降,从而点亮LED。

图1.窗口比较器。

图2.窗口比较器试验板电路。

硬件设置

为窗口比较器电路构建以下试验板电路。

程序步骤

使用第一波形发生器(W1)作为信号源来提供峰峰值为5V,频率为100Hz,直流偏置为2.5V的三角波信号。

使用第二波形发生器(W2)作为5 V恒定基准电压。

使用5 V电源为电路供电。

配置示波器,使通道2上显示输出信号,通道1上显示输入信号。

产生的波形如图3所示。

图3.窗口比较器波形。

当输入电压介于基准电压上限和下限之间时,可在图中观察到窗口。

温度控制

背景知识

窗口比较器应用的一个示例是简单的温度控制器电路(图2)。温度传感器TMP01采用图1所示的双比较器配置。为R1、R2和R3选择适当的值之后,该电路就能监视温度是否保持在所需范围内(15°C至35°C)。

TMP01是一款线性电压输出温度传感器,带有一个窗口比较器,用户可以对其进行编程设置,当超过预定温度设定点电压时就会激活两个开集输出之一。可以使用低漂移基准电压源来设置设定点。将两个开集输出连接在一起作为单线“或”输出,我们便可获得一个信号——当环境温度在目标窗口内时,该信号为逻辑高电平。

图4.温度传感器窗口比较器

对TMP01进行编程

在使用简单梯形电阻分压器的基本固定设定点应用中,所需的温度设定点按照以下步骤编程设置:

选择所需的滞回温度。

计算滞回电流IVREF。

选择所需的设定点温度。

计算为了产生期望的比较器设定点电压(SET HIGH和SET LOW)所需的电阻分压器各梯形电阻值。

滞回电流很容易计算。例如,如需2度的滞回,IVREF = 17 μA。接下来,使用VPTAT比例因子5 mV/K = 5 mV/(°C + 273.15)(25°C时为1.49 V)确定设定点电压VSETHIGH和VSETLOW。然后,根据这些设定点计算分压电阻。计算电阻的公式如下:

VSETHIGH = (TSETHIGH + 273.15) (5 mV/°C)

VSETLOW = (TSETLOW + 273.15) (5 mV/°C)

R1(以kΩ为单位)= (VVREF − VSETHIGH)/IVREF = (2.5 V − VSETHIGH)/IVREF

R2(以kΩ为单位)= (VSETHIGH − VSETLOW)/IVREF

R3(以kΩ为单位)= VSETLOW/IVREF

R1 + R2 + R3的总和等于从基准电压源汲取期望滞回电流(即IVREF)所需的负载电阻。

图5.温度测量。

IVREF = 2.5 V/(R1 + R2 + R3)

由于VREF = 2.5 V,基准负载电阻为357 kΩ 或更大(输出电流为7 μA或更小),因此温度设定点滞回为0度。更大的负载电阻值只会将输出电流降低到7 μA以下,而不会影响器件的运行。滞回量通过选择VREF的负载电阻值来确定。

任务

构建如下电路:

测量VPTAT输出值,计算实测温度(以开氏度和摄氏度为单位)。

构建如下电路:

2a. 明确元器件并尝试绘制电路原理图。

2b. 使用试验板电路提供的信息计算以下参数:

IVREF

VSETHIGH

VSETLOW

TSETHIGH

TSETLOW

2c.温度设定点滞回是多少度?如何更改此值?

2d.电路的工作原理是什么?LED1(红光)和LED2(蓝光)何时点亮?解释您的答案。

问题

对于图1所示电路,通过公式表示VREF(LOW)和VREF(HIGH)与R1、R2、R3和W2的依赖关系。如果所有电阻都相等,那么VREF(HIGH)和VREF(LOW)的比值是多少?

您可以在学子专区论坛上找到问题答案。

图6.温度控制。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭