当前位置:首页 > 通信技术 > 通信技术
[导读]MIMO的分类并探究MIMO技术的本质,是不是在任何信道条件下多天线系统都可以带来速率的提升?MIMO技术都有哪几类,区别是什么等问题。

是德科技与您分享MIMO技术和相关应用。我们将一起和您探讨MIMO技术的发展,MIMO的分类并探究MIMO技术的本质,是不是在任何信道条件下多天线系统都可以带来速率的提升?MIMO技术都有哪几类,区别是什么等问题。文末有MIMO术语供参考。

MIMO是什么?

MIMO 是multi-input multi-out put 系统的缩写,从字面上来看任何具有多个发射和多个接收天线的无线系统都可以称为MIMO。除了MIMO之外,还有single-input multiple-output (SIMO),multiple-input single-output (MISO) 这些只在发射端或接收端有多个天线的准多天线系统。相信大家都理解时分复用、频率复用和码分复用的概念,MIMO与传统的单天线系统相比多个发射和接收天线为无线系统的设计者打开了一个新的维度--空间自由度。信号在多对收发天线间经历不同的信道衰落,如果这些衰落的统计特性互相独立,就相当于在通信系统中引入了多个传输通道。这和增加系统传输带宽几乎可以达到同样的效果。上世纪90年代贝尔实验室一篇介绍 ‘MIMO V-BLAST’技术的论文引发了学术界MIMO技术研究的热潮,20多年后MIMO以及大规模MIMO(Massive MIMO)仍是一个活跃的研究领域。

802.11ax MIMO 测试解决方案www.keysight.com.cn/cn/zh/products/wireless-network-emulators/wlan-device-testing/802-11ax-mimo-test-solution.html"802.11ax 测试解决方案提供了即时可用的软件,能够完成从 SISO 到 8x8 MIMO 的全方位测试,获得所需要的 802.11ax 测试参数。"

在 MIMO 术语中,"输入" 和 "输出" 是相对于无线信道来说的。在这些系统中,多台发射机同时将其信号 "输入" 到无线信道中,然后同时将这些信号组合从无线信道 "输出" 到多台接收机,从而获得性能增益。在一个实际的下行通信系统中,单一基站 (BS) 包含连接到多根天线的多台发射机,单一移动站 (MS) 包含连接到多台接收机的多根天线。在上行链路中也可以使用这种相同的配置。图 1 给出了几种基本的多天线组合图,这些方框图使用多根天线将无线系统中的每台发射机连接到每台接收机。每个箭头表示两根天线之间所有信号路径的组合,包括直接视线 (LOS) 路径 (应当存在一个),以及由于周围环境的反射、散射和折射产生的大量多径信号。例如,单路输入单路输出 (SISO) 是无线电广播、电视广播以及早期第一代蜂窝电话的传统配置。这种单一信道包括无线链路上出现的 LOS 路径和所有多径。单路输入多路输出 (SIMO) 和多路输入单路输出 (MISO) 配置需要在发射机或者接收机上使用单天线。将上行数据从具有单天线的移动设备传输到包含两根以上天线的蜂窝基站或者无线局域网 (WLAN) 接入点时,SIMO 情形可能非常有用。另外,MISO 情形可以表示采用发射分集进行下行数据传输的配置。

图 1 还给出了一种 2x2 MIMO 配置,在此配置中,在具有两个独立发射信道的发射机处放置两根天线,在具有两个独立接收信道的接收机处放置两根天线。在本应用指南中,将以此配置作为主要示例进行讨论。显然,使用其他多天线对组合的 MIMO 配置还有很多,例如 3x3 和 4x4。MIMO 操作并不需要发射机和接收机处的天线数目相同,即一个位置的天数数目可以多于另一位置的天线数目,例如 MxN 配置,其中 M 与 N 不相等,M 为发射天线数,N 为接收天线数。

对于所有的无线通信系统而言,无论是3GPP UMTS这样的移动无线网络,还是像WLAN那样的无线局域网,除了通过高阶调制或更大的信号带宽这样传统的方式来提高数据速率以外,还可以通过多天线技术来提高信道的容量。作为未来移动通信的必选项目,MIMO已经引起了更多的关注,而对于MIMO系统的实现和测试,也成为通信行业的热点及难点。本文在介绍MIMO的基本原理以及在MIMO不同移动通信标准表现形式的基础上,介绍R&S公司提供的相应测试解决方案,可以满足不同客户、不同标准及不同阶段的MIMO系统测试需求。

2 MIMO基本原理

根据不同的传输信道类型,可以在无线系统中使用相应的分集方式。目前,主要的分集方式包括时间分集(不同的时隙和信道编码)、频率分集(不同的信道、扩频和OFDM)以及空间分集等。多天线系统利用的就是空间方式,而MIMO作为典型的多天线系统,可以明显提高传输速率。而在实际的无线系统中,可以根据实际情况使用一种或者多种分集方式。

为了实现 Gb/s 级链路吞吐量,新的制式使用更高带宽、多路输入多路输出(MIMO)、空时编码和高阶正交频分复用(OFDM)调制制式,这对无线元器件的线性、带宽和功耗提出了新的要求。以802.11 ac为例,该标准构建在 802.11 n 的高吞吐量性能之上,旨在应对新应用模型的挑战。802.11 ac 继续在 802.11 a/n 5 GHz 频段下工作,是在高吞吐量 802.11 n 技术标准之上建立起来的,并主要在以下四个方面做出了改进:更宽的信道带宽(最佳 160 MHz 带宽);更高阶的 MIMO(最高 8*8);多用户 MIMO(最多 4 个用户);更高阶的调制(可支持 256 QAM)。

设计验证工程师必须确保其针对 802.11 ac 的设计能够在各种条件下运行良好,验证其设备在要求最严格的 MIMO 空间复用模式下仍符合性能要求。验证MIMO发射机的工作性能需要一台多通道信号分析仪,用以解调多流波形并测量 EVM 和其它物理层参数。802.11 ac MIMO 发射机的设计和验证需要对多通道 MIMO 空间复用信号进行误差矢量幅度(EVM)测量。测试解决方案应提供快速的测量方法,并保证极高的置信度。802.11 ac 标准更高阶的调制形式和更宽的带宽要求 EVM 测量较以往更为准确,而测试解决方案提供的剩余 EVM 应超过这些要求。随着设备的演进,测试解决方案也应该逐步改进,对 MIMO 设备的测试支持能力也要从单、双通道40 MHz 扩展至三、四通道 160 MHz 的水平。

新制式为通信系统架构师和射频功率放大器设计人员带来了新的挑战。设计人员必须确定现有 3G 设计和未来 4G 运行环境的性能差异,以及 3G 设计是否需要重新设计,或者新的供应商是否合格。硬件也必须满足或超出性能标准的规定,例如 ACPR、EVM 或吞吐量(如 BLER、BER 和 PER),同时满足内部产品设计目标要求。由于智能手机和其他先进无线器件对电池的依赖程度极高,如何通过设计获得最高的效率十分关键。射频功率放大器具有特别重要的作用。选择和设计满足设计目标的适合功率放大器是一个巨大的挑战。

面临的挑战

功率放大器是无线通信系统中决定整体性能和吞吐量的关键元件,并且具有固有的非线性。非线性产生的频谱再生会导致相邻信道干扰和违反监管机构标准的带外辐射,还会引发带内失真,降低通信系统的误码率(BER)质量和数据吞吐量。

图1 至 4 是根据分量载波组合位置划分的不同传输体系结构(例如数字基带阶段、射频混频器之前的模拟波形阶段、通过混频器后但在功率放大器之前或者通过功率放大器之后)。图 1-4 显示,集成 RFIC SoC、CMOS 芯片组和基站体系结构分别以不同的方式实现了各自的设计目标,但这些体系结构具有共同的挑战――宽带功率放大器设计,这也是射频工程师面临的最普遍挑战。

另一个挑战是在峰均功率比(PRPR 或波峰因数)与功率附加效率(PAE)之间取得折中。新的正交频分多路复用传输制式,例如 3GPP LTE、LTE-Advanced 和 802.11ac,,具有高峰均功率比。偶发的较高峰值功率电平导致功率放大器严重钳位、影响整个波形的频谱模板一致性、EVM 和 BER。在较低功率下运行功率放大器是降低这种非线性的一个方法。

但是,这意味着功率放大器需要在长期饱和功率以下回退很多。换句话说,功率放大器在大多数时间都处于资源浪费的状态。这导致极低的效率,通常低于 10%。(超过 90% 的直流功率转化为热能并流失)。对于基站来说,这会限制服务区域范围,增加服务提供商的资本和运营支出。同时,这还会降低手机的服务质量(QoS)和电池寿命,导致客户不满和收入下滑。线性化可以让功率放大器在高功率附加效率(PAE)区间运行,接近饱和点且不会出现严重的信号失真,从而降低了成本。

数字预失真(DPD)是一个经济高效的线性化方法。目前,市场可提供 2G/3G 制式的全套商用现货(COTS)芯片组和 IP 来满足此需求。但是,很多情况下这些商用数字预失真方法无法满足 4G 要求。以下总结了当今物理层通信设计人员面临的数字预失真挑战。

解决方案

工程师向 4G 过渡需要一个快速可行的解决方案,以实现 4G 通信系统的数字预失真。各个知识层面的工程师都可以使用这个解决方案,并且方案的设备要求极低。工具套件必须精确、避免依赖某一特定厂商的芯片组或硬件方案来实现初期建模,并且能够将定制数字预失真融入基带设计中,从而保持较小的BOM表。此外,它必须能够与一系列其他工具连接,以进行硬件验证。

增加了数字预失真功能――W1716 DPD Builder 的 Agilent SystemVue 平台是满足上述条件的解决方案之一。该软件提供带有向导指示的简单易用型用户界面,能够让用户对大功率和小功率功率放大器、收发机集成电路甚至自动增益控制模块的 4G记忆 效应进行快速建模和校正。

W1716 DPD 旨在帮助无线系统架构师使用实验室现有的通用商用测试设备进行早期的体系架构和元件分析。专有数字预失真解决方案需要工程师仅仅为了进行4G可行性研究就要在方案成熟前做出一系实施决定。使用 W1716 DPD,无线架构师可以在数分钟内评测一个元件在保持硬件灵活性和充分的 4G 测量信心的前提下能够多大程度被线性化。安捷伦实现上述目标凭借了以下关键优势:强大且易用的安捷伦数字预失真算法、开放、不依赖于特定厂商或技术的数字预失真与功率放大器硬件设计方法、高性能且灵活的安捷伦仪器、真实且符合标准的波形(例如 LTE 和 LTE-Advanced,带有 CFR)进行表征。

CFR 补充并改善了数字预失真的效果。当代通信系统中高频谱效率的射频信号具有高达 13 dB 的峰均功率比(PAPR)。CFR 可预处理信号以降低信号峰值,同时不会引发严重的信号失真。通过降低峰均功率比,CFR 支持功率放大器在更高的功率电平下更高效率地工作,并且不会引发频谱模板和误差矢量幅度标准违规。CFR 直接作用于信号,而数字预失真校正功率放大器的非线性,支持信号功率的进一步提升。

Agilent PXI 模块化数字预失真仪器

与其他数字预失真方法不同,安捷伦的数字预失真方案从设计人员的角度出发,提供功能灵活的内置宽带建模工局,可连接至可配置的仪器(例如安捷伦模块化 PXI 系列)(图 5)。

此设置中,任意波形发生器配有用于 LTE-A 和 802.11ac 的 SystemVue,可以提供测试元件所需的标准信号,运行安捷伦矢量信号分析(VSA)软件的 M9392A 捕获信号,以测量功率放大器的非线性。使用 SystemVue 以及 M9330A 和 M9392A 可以控制并实现整个数字预失真设计流程的自动化。

对运行中的模拟功率放大器应用数字预失真

图 6 显示的是记忆多项式数字预失真器的结构图。第一步是理解功率放大器行为背后的物理机制,并提取数字预失真系数。第二步是构建预失真器模型,以便在第一步的基础上精确捕获静态非线性和记忆效应。标记为“预失真器训练”的反馈路径(模块 A)输入为 (n)/G,输出为 zˆ(n),其中 G 是预期功率放大器小幅信号增益。实际预失真器是反馈路径的完全复制(A 的副本),输入和输出分别为 x(n) 和 z(n)。理想状况下,(n) = Gx(n),其中 z(n) = zˆ(n),误差项 e(n) = 0。根据 y(n) 和 z(n),该结构可以让我们直接找出模块 A 的参数,进而生成预失真器。算法在误差能量 ║e(n)║2 最低时收敛。

使用 SystemVue W1716 DPD 功能表征真实的功率放大器硬件是一个简单直接的、只需几分钟的过程。测量设置和步骤如图 7 所示。注意,基于仿真的数字预失真提取方法也使用相同的流程。本应用指南中暂不讨论该方法。

数字预失真建模流程步骤:

1. 通过 W1716 DPD 向导计算并将数字预失真激励波形(例如 LTE-Advanced、802.11ac 或定制波形)下载至 M9330A 任意波形发生器。基带任意波形发生器输出 I 和 Q 模拟电压,来驱动 Agilent N5182A MXG 信号源的基带输入。之后,MXG 输出一个调制的射频波形作为功率放大器的激励,激励信号带有之前设定的平坦度和校准。注意,大型基站功率放大器可能需外部前置放大器来驱动至 1 dB 压缩点。

2. 使用 M9392A 矢量信号分析仪捕获原始输入信号和功率放大器放大之后的信号,并通过 89600 VSA 软件传回 SystemVue。注意,功率放大器输出信号进入 M9392A 前可能需要衰减,以避免损环或造成分析仪过载,或降低其校准性能。

3. W1716 DPD 工具可以根据时间对应并比较捕获的输出波形与线性标度的输入波形,以获得代表被测件特性的 EVM 历史记录。根据上述差异可以提取数字预失真模型,然后通过仿真进行验证。此时,您可以获得一个在断开测量仪器后仍可使用的“脏(dirty)功率放大器”模型。

4. 为了在硬件中进行验证,对原始激励信号进行预失真并再次下载到信号发生器上,以再次测试功率放大器。使用与步骤 2 相同的物理连接并捕获线性化后的DPD+功率放大器响应。

5. 分析并绘制捕获响应的图形。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭