三轴陀螺仪在应用中的技术原理是什么?
扫描二维码
随时随地手机看文章
MEMS陀螺仪是科里奥利力的最常见应用,MEMS陀螺仪利用科里奥利力(旋转物体在径向运动时所受到的切向力),旋转中的陀螺仪可对各种形式的直线运动产生反映,通过记录陀螺仪部件受到的科里奥利力可以进行运动的测量与控制。为了产生这种力,MEMS陀螺仪通常安装有两个方向的可移动电容板,“径向的电容板加震荡电压迫使物体作径向运动,横向的电容板测量由于横向科里奥利运动带来的电容变化。”这样,MEMS陀螺仪内的“陀螺物体”在驱动下就会不停地来回做径向运动或震荡,从而模拟出科里奥利力不停地在横向来回变化的运动,并可在横向作与驱动力差90°的微小震荡。这种科里奥利力好比角速度,所以由电容的变化便可以计算出MEMS陀螺仪的角速度。
以意法半导体的MEMS陀螺仪为例,其核心元件是一个微加工机械单元,在设计上按照一个音叉机制运转(音叉机制的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动,当音叉开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号)。电机驱动部分通过静电驱动方法,使机械元件前后振荡,产生谐振,利用科里奥利力把角速率转换成一个特定感应结构的位移,两个正在运动的质点向相反方向做连续运动。只要从外部施加一个角速率,就会出现一个力,力的方向垂直于质点的运动方向。产生的力使感应质点发生位移,位移大小与所施加的加速度速率大小成正比,位于旁边的传感器就能感应出在定子和转子之间引起的电容变化,从而实现操控功能。并且,由于在控制电路内部嵌入了先进的电源关断功能,可以在不需要传感器功能的时候关闭整个传感器,或让其进入深度睡眠模式,便可大幅降低陀螺仪的总功耗。从而像手机等便携式设备就会由此获得更长的续航时间。
现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。
三轴陀螺仪在许多应用中发挥着重要的作用,其主要功能如下:
1. 姿态感知和控制:三轴陀螺仪可以检测物体的旋转速度,提供关于物体姿态(如俯仰、横滚和偏航)的信息。这对于姿态控制、平衡调节和导航非常关键。例如,在飞行器或机器人中使用陀螺仪来稳定飞行或保持平衡。
2. 运动检测和跟踪:三轴陀螺仪可以检测物体的加速度变化,从而提供关于物体的线性运动和姿态的信息。这对于运动检测、手势识别、动作捕捉等应用非常有用。它被广泛应用于游戏控制器、运动追踪设备和虚拟现实系统中。
3. 导航和定位:三轴陀螺仪结合其他传感器(如加速度计、磁力计和GPS)可以提供更准确的导航和定位信息。陀螺仪可以用于测量转动速度,并结合其他传感器的数据来估计物体的位置、方向和运动轨迹。这在无人机、航空航天、汽车导航和智能手机中的导航应用中发挥着重要作用。
4. 手持设备稳定性:三轴陀螺仪在手持设备中用于稳定图像和视频。通过检测设备的旋转和晃动,陀螺仪可以自动调整图像稳定器和防抖功能,提供更平滑和稳定的图像和视频质量。