伺服电机是如何进行工作的?它的原理是什么?
扫描二维码
随时随地手机看文章
伺服电机是一种常用的机械设备,它可以根据控制信号来移动或转动。伺服电机主要由伺服驱动器、电动机和其他相关部件组成。伺服马达用来提供动力,而伺服控制器则负责调整输出速度和位置,并将其转化为电信号发送给执行机构。伺服电动机通常由两部分组成:一组感应电动机,另一组是被称为转子的飞轮。当转子旋转时,产生电磁场,带动另一个被称为马达的小型机械零件工作。转子上有两个不同的线圈,它们与吸盘连接在一起。吸盘会把转子上面的线缠绕起来,使整个马达看起来像一把剑。齿轮装置使得转子旋转顺畅,同时也限制了噪音。
伺服电机的工作原理涉及到了编码器、控制器和驱动器这三个重要部分。下面我们分别来讲解下。
编码器:编码器是伺服电机中一个非常重要的部分,它可以将电机的运动姿态(即位置和速度)转化为数字信号,从而进行精细的控制。通常,编码器会通过两个输出通道,即A相和B相,来对伺服电机进行精细控制。A相和B相之间会存在一定的相角偏移差,它们之间可以判断伺服电机的转向(顺时针或逆时针)。
控制器:控制器可以说是伺服电机的“大脑”,负责接收编码器传来的信号,并将驱动器发出的控制信号转化为电机运动指令。主要控制通过PWM(脉冲宽度调制)技术调整电机的功率和方向。控制器中发出的信号通常基于反馈信息和设定值,将驱动信号进行精细调整,以达到精确控制的效果。
驱动器:驱动器是伺服电机中最终的动力输出部分,负责将电能转化为机械能,推动电机运动。在某些情况下,如果电机在停止时需要保持转动姿态,驱动器还会自动控制电梯的抱闸,以防止电机因重力影响产生滑动现象。
伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便,产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
伺服系统目前有三种分类方式,分别是按照 系统功率大小、按照液压元件 和 按控制原理分类。(1)按照功率大小,可分为小型伺服、中型伺服和大型伺服系统。大型伺服是指系统功率大于5KW,主要用于驱动重型机械设备;中型伺服是指功率介于1KW和5KW之间,在OEM市场得到广泛应用;小型伺服是指系统功率小于1KW,主要应在在中低端OEM市场。(2)按照液压元件,伺服系统可分为液压伺服系统、电气伺服系统和气动伺服系统;(3)按控制原理分类,伺服系统可分为开环控制伺服系统、闭环控制伺服系统和半闭环控制伺服系统。
开环伺服系统 即无位置反馈的系统,其驱动元件主要是功率步进电机或液压脉冲马达。这两种驱动元件的工作原理的实质是数字脉冲到角度位移的变换,它不用位置检测元件实现定位,而是靠驱动装置本身,转过的角度正比与指令脉冲的个数;运动速度由进给脉冲的频率决定。开环伺服系统的结构简单,易于控制,但精度差,低速不平稳,高速扭矩小。一般用于轻载负载变化不大或经济型数控机床上。
闭环伺服系统 是误差控制随动随动系统。数控机床进给系统的误差,是CNC输出的位置指令和机床工作台(或刀架)实际位置的差值。闭环系统运动执行元件不能反映运动的位置,因此需要有位置检测装置。该装置测出实际位移量或者实际所处的位置,并将测量值反馈给CNC装置,与指令进行比较,求得误差,依次构成闭环位置控制。由于闭环伺服系统是反馈控制,反馈测量装置精度很高,所以系统传动链的误差,环内各元件的误差以及运动中造成的误差都可以得到补偿,从而大大提高了跟随精度和定位精度。
半闭环系统 是位置检测元件不直接安装在进给坐标的最终运动部件上,而是中间经过机械传动部件的位置转换,称为间接测量。亦即坐标运动的传动链有一部分在位置闭环以外,在环外的传动误差没有得到系统的补偿,因而这种伺服系统的精度低于闭环系统。半闭环和闭环系统的控制结构是一致的,不同点只是闭环系统环内包括较多的机械传动部件,传动误差均可被补偿。理论上精度可以达到很高。但由于受机械变形、温度变化、振动以及其它因素的影响,系统稳定性难以调整。