当前位置:首页 > 通信技术 > 通信技术
[导读]以下内容中,小编将对OFDM原理的相关内容进行着重介绍和阐述,希望本文能帮您增进对OFDM的了解,和小编一起来看看吧。

以下内容中,小编将对OFDM原理的相关内容进行着重介绍和阐述,希望本文能帮您增进对OFDM的了解,和小编一起来看看吧。

在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽要宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。

OFDM主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ISI) 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上可以看成平坦性衰落,从而可以消除码间串扰,而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。

OFDM技术是HPA联盟(HomePlug Powerline Alliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。

通常的数字调制都是在单个载波上进行,如PSK、QAM等。这种单载波的调制方法易发生码间干扰而增加误码率,而且在多径传播的环境中因受瑞利衰落的影响而会造成突发误码。若将高速率的串行数据转换为若干低速率数据流,每个低速数据流对应一个载波进行调制,组成一个多载波的同时调制的并行传输系统。这样将总的信号带宽划分为N个互不重叠的子通道(频带小于Δf),N个子通道进行正交频分多重调制,就可克服上述单载波串行数据系统的缺陷。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM, W-OFDM, F-OFDM, MIMO-OFDM,多带-OFDM。

OFDM中的各个载波是相互正交的,每个载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便减小了载波间的干扰。由于载波间有部分重叠,所以它比传统的FDMA提高了频带利用率。

在OFDM传播过程中,高速信息数据流通过串并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。

在过去的频分复用(FDM)系统中,整个带宽分成N个子频带,子频带之间不重叠,为了避免子频带间相互干扰,频带间通常加保护带宽,但这会使频谱利用率下降。为了克服这个缺点,OFDM采用N个重叠的子频带,子频带间正交,因而在接收端无需分离频谱就可将信号接收下来。

OFDM系统的一个主要优点是正交的子载波可以利用快速傅利叶变换(FFT/IFFT)实现调制和解调。对于N点的IDFT运算,需要实施N^2次复数乘法,而采用常见的基于2的IFFT算法,其复数乘法仅为(N/2)log2N,可显著降低运算复杂度。

在OFDM系统的发射端加入保护间隔,主要是为了消除多径所造成的ISI。其方法是在OFDM符号保护间隔内填入循环前缀,以保证在FFT周期内OFDM符号的时延副本内包含的波形周期个数也是整数。这样时延小于保护间隔的信号就不会在解调过程中产生ISI。

但是,OFDM也存在缺陷,具体包括:

(1)对频偏和相位噪声比较敏感。OFDM技术区分各个子信道的方法是利用各个子载波之间严格的正交性。频偏和相位噪声会使各个子载波之间的正交特性恶化,仅仅1%的频偏就会使信噪比下降30dB。因此,OFDM系统对频偏和相位噪声比较敏感。

(2)功率峰值与均值比(PAPR)大,导致射频放大器的功率效率较低。与单载波系统相比,由于OFDM信号是由多个独立的经过调制的子载波信号相加而成的,这样的合成信号就有可能产生比较大的峰值功率,也就会带来较大的功率峰值与均值比,简称峰均值比。对于包含N个子信道的OFDM系统来说,当N个子信道都以相同的相位求和时,所得到的峰值功率就是均值功率的N倍。当然这是一种非常极端的情况,通常OFDM系统内的峰均值不会达到这样高的程度。高峰均值比会增大对射频放大器的要求,导致射频信号放大器的功率效率降低。

(3)负载算法和自适应调制技术会增加系统复杂度。负载算法和自适应调制技术的使用会增加发射机和接收机的复杂度,并且当终端移动速度高于30km每小时时,自适应调制技术就不是很适合了。

以上就是小编这次想要和大家分享的有关OFDM的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭