你了解激光共聚焦显微镜吗?激光共聚焦显微镜结构介绍
扫描二维码
随时随地手机看文章
激光共聚焦显微镜是测量仪器中的一种,但是很多人对激光共聚焦显微镜却并不了解。为增进大家对激光共聚焦显微镜的认识,本文将对激光共聚焦显微镜、激光共聚焦显微镜的结构予以介绍。如果你对激光共聚焦显微镜具有兴趣,不妨继续往下阅读哦。
一、激光共聚焦显微镜
激光扫描共聚焦显微镜(Confocal laser scanning microscope,简称CLSM)是近代生物医学图像仪器。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针。
利用计算机进行图像处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。
激光扫描共聚焦显微镜(Laser scanning confocal microscope)是20世纪80年代中期发展起来并得到广泛应用的新技术,它是激光、电子摄像和计算机图像处理等现代高科技手段渗透,并与传统的光学显微镜结合产生的先进的细胞分子生物学分析仪器,在生物及医学等领域的应用越来越广泛,已经成为生物医学实验研究的必备工具。
传统荧光显微镜使用荧光物质标志细胞中的特定结构,不仅图像与背景的对比度增强,而且由于许多荧光显微镜的光源使用短波长的紫外光,大大提高了分辨率(δ=0.61·λ/NA,其中δ为显微镜的分辨率;λ为照明光线的波长;NA 为物镜的数值孔径)。但当所观察的荧光标本稍厚时,传统荧光显微镜一个难以克服的缺点就显现出来:焦平面以外的荧光结构模糊、发虚。原因是大多数生物学标本是层次区别的重叠结构(如耳蜗基底膜。其实是外毛细胞 、多种支持细胞 、神经纤维等组成的空间结构),,在普通光学显微镜下聚焦平面的变化, 会表现出不同的形态。假若荧光标记的结构在不同层次上都有分布,且重叠在一起,反射荧光显微镜(epifluorescent microscope)不仅从焦平面上收集光量,而且来自焦平面上方或下方的散射荧光也被物镜所接收,荧光显微镜的光学分辨率就要大大降低 。
在传统光学显微镜基础上,激光扫描共聚焦显微镜用激光作为光源,采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图像处理观察、分析和输出。 其特点是可以对样品进行断层扫描和成像,进行无损伤观察和分析细胞的三维空间结构。 同时,利用免疫荧光标记和离子荧光标记探针,该技术不仅可观察固定的细胞、组织切片,还可以对活细胞的结构、分子、离子及生命活动进行实时动态观察和检测,在亚细胞水平上观察诸如 Ca2+,pH 值,膜电位等生理信号及细胞形态的变化,成为形态学、分子细胞生物学、神经科学、药理学、遗传学等领域中新一代强有力的研究工具,极大地丰富了人们对细胞生命现象的认识。
二、激光共聚焦显微镜结构
激光共聚焦扫描显微镜(Confocal laser scanning microscope,CLSM)用激光作扫描光源,逐点、逐行、逐面快速扫描成像,扫描的激光与荧光收集共用一个物镜,物镜的焦点即扫描激光的聚焦点,也是瞬时成像的物点。系统经一次调焦,扫描限制在样品的一个平面内。调焦深度不一样时,就可以获得样品不同深度层次的图像,这些图像信息都储于计算机内,通过计算机分析和模拟,就能显示细胞样品的立体结构。
在结构配置上,激光扫描共聚焦显微镜除了包括普通光学显微镜的基本构造外,还包括激光光源、扫描装置、检测器、计算机系统 (包括数据采集、处理、转换、应用软件)、图像输出设备、光学装置和共聚焦系统等部分。由于该仪器具有高分辨率、高灵敏度、“光学切片”(Optical sectioning)、三维重建、动态分析等优点,因而为基础医学与临床医学的研究提供了有效手段。此外,CLSM 对荧光样品的观察具有明显的优势,只要能用荧光探针进行标记的样品就可用其观察。
激光共聚焦扫描显微镜既可以用于观察细胞形态,也可以用于细胞内生化成分的定量分析、光密度统计以及细胞形态的测量, 配合焦点稳定系统可以实现长时间活细胞动态观察。
以上便是此次带来的激光共聚焦显微镜相关内容,通过本文,希望大家对激光共聚焦显微镜已经具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!