当前位置:首页 > 电源 > 电源
[导读]晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等),它具有检测、整流、放大、开关、稳压和信号调制等多种功能。作为交流断路器,晶体管可以根据输入电压控制输出电流。

什么是晶体管?

晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等),它具有检测、整流、放大、开关、稳压和信号调制等多种功能。作为交流断路器,晶体管可以根据输入电压控制输出电流。与普通机械开关(如继电器和开关)不同,晶体管使用电信号来控制其打开和关闭,因此开关速度可以非常快,实验室中的开关速度可以达到100GHz以上。晶体管通常是由半导体材料制成的固态电子器件。电流的循环可以通过添加电子来改变。这一过程使电压变化成比例地影响输出电流的许多变化,从而使放大倍数倍增。除大多数电子设备外,并非所有电子设备都包含一种或多种类型的晶体管。有些晶体管单独或通常放置在集成电路中,并且根据应用的状态而变化。

根据晶体管的性能,可形成晶体管的逻辑电路,在数字集成电路中运用广泛。

同类型逻辑电路(RTL,DTL,TTL)的不同特点:

数字集成电路是对数字集成电路执行逻辑运算和转换的逻辑电路。逻辑电路的基本单元是门电路和触发电路。触发电路主要由各种门电路组成,是数字集成电路的基本单元。依照基本单元电路的工作特点不同,分为三种类型:饱和型逻辑(RTL,DTL,TTL)、抗饱和型逻辑(STTL)、非饱和型逻辑(ECL)。本文主要介绍RTL,DTL,TTL三种逻辑电路。

第一种是电阻晶体管耦合逻辑电路(RTL),它是或非门电路。当输入信号为高电平时,输出为低电平,输出为低电平vol=0.2V,采用步进连接时输出为高电平vol=1V,电路具有速度慢、负载能力低、抗干扰能力差的特点。电路如图1所示:

图1 电阻-晶体管耦合逻辑电路

第二种是二极管-晶体管耦合逻辑电路(DTL),它是一种与非门电路。只要输入信号为低电平,则输出为高电平。只有当所有输入均为高电平时,输出才为低电平。对于RTL电路,其负载能力和抗干扰能力有所提高,但电路速度仍然很慢。

图2 二极管-晶体管逻辑电路

第三种就是我们用到的TTL与非门,如图所示,由于输入级和输出级均由晶体管组成,故称为晶体管-晶体逻辑管,简称TTL电路。其实,TTL门电路也分很多种,比如说非门、与非门、或非门、与或非门以及OC输出的与非门。虽然种类多,但是基本的工作原理都是类似的。所以,接下来就介绍一个经典的TTL与非门电路。

图3 典型TTL与非门

又因为在晶体管中参与导电的有两种极性的载流子,故这种电路属于双极性电路。如图所示:

图4 多射极晶体管的结构及等效电路

中间级:由三极管T2和电阻R2、R3组成。在电路的开通过程中利用T2的放大作用,为输出管T3提供较大的基极电流,加速了输出管的导通。所以,中间级的作用是提高输出管的开通速度,改善电路的性能。

输出级:由三极管T3、T4、T5和电阻R5组成。如图3所示,图3中 T5三极管非门电路,图3中T3、T5是TTL与非门电路中的输出级。从图中可以看出,输出级由三极管T5实现逻辑非的运算。但在输出级电路中用三极管T4、T3和R4组成的有源负载替代了三极管非门电路中的R4,目的是使输出级具有较强的负载能力。其中T4可以起到三极管反向击穿的保护作用。

TTL电平原理:

TTL电平信号被利用得最多是因为通常数据表示采用二进制规定, +5V等价于逻辑“1",0V等价于逻辑“0”,这被称作TTL(Transistor- Transistor Logic晶体管晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。

TTL输出高电平>2.4V,输出低电平<0.4V。 在室温下,一般输出高电平是3.5V ,输出低电平是0.2V。 最小输入高电平和低电平:输入高电平>-2.0V,输入低电平<=0.8V,噪声容限是0.4V。

其他常见的TTL应用是四管单元TTL与非门,STTL和LSTTL电路,LSTTL等。

晶体管是一种与其他电路元件结合使用时可产生电流增益、电压增益和信号功率增益的多结半导体器件。因此,晶体管称为有源器件,而二极管称为无源器件。晶体管的基本工作方式是在其两端施加电压时控制另一端的电流。晶体管两种主要类型:双极型晶体管(BJT)和场效应管(FET)。双极晶体管(Bipolar Junction Transistor-BJT)作为两种主要类型的晶体管之一,又称为半导体三极管、晶体三极管,简称晶体管。它由两个PN结组合而成,有两种载流子参与导电是一种电流控制电流源器件。晶体三极管主要应用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。

晶体三极管的分类

按照晶体三极管扩散区半导体材料不同,可分为NPN型晶体三极管和PNP型晶体三极管,如图1所示。晶体三极管有三个掺杂不同的扩散区和两个PN结,三端分别称为发射极E(Emitter)、基极B(Base)和集电极C(Collector)。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体管电路符号中的箭头方向代表PN结的方向(即发射极的电流方向)。

晶体三极管结构图解

(以NPN型晶体管为例)

采用平面工艺制成NPN型硅材料晶体三极管的结构如图2所示。器件的最底层为高掺杂的N型硅片为衬底层,然后生长出低掺杂的N型外延层,经过一次氧化在外延层上生长出SiO2氧化层。一次光刻在SiO2氧化层光刻出硼扩基区,之后进行硼扩散,一般分为两步扩散:预先沉积和再分布扩散。在硼扩散形成晶体三极管的P型基区之后,进行二次光刻和磷扩散形成高掺杂的N型发射区。最后光刻出引线孔,经过金属化(Al)和反刻引出基极和发射极,最后背面合金形成集电极。

晶体三极管位于中间的P区域称为基区,其区域很薄且杂质浓度很低;位于上层的N+区为发射区,掺杂浓度很高;位于下层的N和N+两种掺杂的N区是集电区,面积很大。因此晶体三极管为非对称器件且器件的外特性与三个区域的上述特点紧密相关。

晶体三极管工作原理详解

(以NPN型晶体管为例)

根据晶体三极管的集电结和发射结的偏置情况,NPN型晶体三极管具有4种工作区间,如表1所示。

正向放大区(或简称放大区):当发射结正向偏置,集电结反向偏置时,晶体管工作在放大区。大多数双极性晶体管的设计目标,是为了在正向放大区得到[敏感词]的共射极电流增益。晶体管工作在这一区域时,集电极-发射极电流与基极电流近似成线性关系。由于电流增益的缘故,当基极电流发生微小的扰动时,集电极-发射极电流将产生较为显著变化。

反向放大区:当发射结反向偏置,集电结正向偏置时,晶体管工作在反向放大区。此时发射区和集电区的作用与正向放大区正好相反,但由于集电区的掺杂浓度低于发射区,反向放大区产生的放大效果小于正向放大区。而大多数双极性晶体管的设计目标是尽可能得到[敏感词]正向放大电流增益,因此在实际这种工作模式几乎不被采用。

饱和区:当发射结和集电结均为正向偏置时,晶体管工作在饱和区。此时晶体管发射极到集电极的电流达到[敏感词]值。即使增加基极电流,输出的电流也不会再增加。饱和区可以在逻辑器件中用来表示高电平。

截止区:当发射结和集电结均为反向偏置时,晶体管工作在截止区。在这种工作模式下,输出电流非常小(小功率的硅晶体管小于1微安,锗晶体管小于几十微安),在逻辑器件中可以用来表示低电平。

正向放大区: 内部载流子的运动详解

晶体三极管的放大作用表现为小基极电流可以控制大集电极电流。如下图3所示,从晶体内部载流子的运动与外部电流的关系上来做进一步的分析。

发射结加正向电压,扩散运动形成发射极电流IE

发射结加正向电压且发射区杂质浓度高,所以大量自由电子因扩散运动越过发射结到达基区。与此同时,空穴也从基区向发射区扩散,但由于基区杂质浓度低,所以空穴形成的电流非常小,近似分析时可忽略不计。可见,扩散运动形成了发射极电流IE。

扩散到基区的自由电子与空穴的复合运动形成基极电流IB

由于基区很薄,杂质浓度很低,集电结又加了反向电压,所以扩散到基区的电子中只有极少部分与空穴复合,其余部分均作为基区的非平衡少子到达集电结。又由于电源 VBE的作用,电子与空穴的复合运动将源源不断地进行,形成基极电流IB。

集电结加反向电压,漂移运动形成集电极电流IC

由于集电结加反向电压且其结面积较大,基区的非平衡少子在外电场作用下越过集电结到达集电区,形成漂移电流。与此同时,集电区与基区的平衡少子也参与漂移运动,但它的数量很小,近似分析中可忽略不计。可见,在集电极电源VCB的作用下,漂移运动形成集电极电流IC。

晶体三极管的特性曲线

晶体三极管的输入特性曲线如图4所示。当UCE=0时,相当于集电极与发射极短路,即发射结与集电结并联。因此,输入特性曲线与PN结的伏安特性类似,呈指数关系。当UCE增大时,曲线将右移。对于小功率晶体管,UCE大于1V的一条输入特性曲线可以近似UCE大于1V的所有输入特性曲线。晶体三极管的输出特性曲线如图5所示。对于每一个确定的IB,都有一条曲线,所以输出特性的一族曲线。截止区:发射结电压小于开启电压,且集电结反向偏置。放大区:发射结正向偏置且集电结反向偏置。饱和区:发射结与集电结均处于正向偏置。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭