SoC设计入门 - APB master设计(接口类基础思维)
扫描二维码
随时随地手机看文章
大家不要以为APB的master和slave很简单,不需要了解。这是大错特错,为什么呢?
不过设计什么模块,你都要让它挂在标准总线上,比如你设计DMA,你就同时需要了解AMBA的master和slave设计。又比如你是设计算法计算模块,你的数据肯定要放到sram,你当然也要了解AMBA的master设计,将数据传输到crossbar上,进而放到指定memory。又比如SOC设计,肯定需要各种bridge,假设一个AHB2APB,你就同时需要了解AHB slave和APB master。
以APB为例,还是因为APB简单,但是我们可以从它学到设计的方法和思路。
既然是设计就需要spec和状态机。
设计spec如下
1、模块规划
模块diagram
2、接口描述
接口描述
3、时序描述
读时序
读时序
写时序
写时序
4、FSM
就是之前讲的APB协议状态机。如下图
APB FSM
模块规划有了,接口有了,时序有了,状态机有了,就可以开始设计coding了,代码如下:
module apb#( parameter RD_FLAG = 8'b0 , parameter WR_FLAG = 8'b1 , parameter CMD_RW_WIDTH = 8 , parameter CMD_ADDR_WIDTH = 16 , parameter CMD_DATA_WIDTH = 32 , parameter CMD_WIDTH = CMD_RW_WIDTH + CMD_ADDR_WIDTH + CMD_DATA_WIDTH)(//-- clkrst signal input pclk_i , input prst_n_i ,
//-- cmd_in input [CMD_WIDTH-1:0] cmd_i , input cmd_vld_i , output reg [CMD_DATA_WIDTH-1:0] cmd_rd_data_o,
//-- apb interface output reg [CMD_ADDR_WIDTH-1:0] paddr_o , output reg pwrite_o , output reg psel_o , output reg penable_o , output reg [CMD_DATA_WIDTH-1:0] pwdata_o , input [CMD_DATA_WIDTH-1:0] prdata_i , input pready_i , input pslverr_i);
//-- FSM stateparameter IDLE = 3'b001;parameter SETUP = 3'b010;parameter ACCESS = 3'b100;
//-- current state and next statereg [2:0] cur_state;reg [2:0] nxt_state;
//-- data bufreg start_flag ;reg [CMD_WIDTH-1:0] cmd_in_buf ;reg [CMD_DATA_WIDTH-1:0] cmd_rd_data_buf;
/*----------------------------------------------- -- update cmd_in_buf -------------------------------------------------*/always @ (posedge pclk_i or negedge prst_n_i) begin if (!prst_n_i) begin cmd_in_buf <= {(CMD_WIDTH){1'b0}}; end else if (cmd_vld_i && pready_i) begin cmd_in_buf <= cmd_i; endend
/*----------------------------------------------- -- start flag of transfer -------------------------------------------------*/always @ (posedge pclk_i or negedge prst_n_i) begin if (!prst_n_i) begin start_flag <= 1'b0; end else if (cmd_vld_i && pready_i) begin start_flag <= 1'b1; end else begin start_flag <= 1'b0; endend
/*----------------------------------------------- -- update current state -------------------------------------------------*/always @ (posedge pclk_i or negedge prst_n_i) begin if (!prst_n_i) begin cur_state <= IDLE; end else begin cur_state <= nxt_state; endend
/*----------------------------------------------- -- update next state -------------------------------------------------*/always @ (*) begin case(cur_state) IDLE :if(start_flag)begin nxt_state = SETUP; end else begin nxt_state = IDLE; end
SETUP :nxt_state = ACCESS; ACCESS:if (!pready_i)begin nxt_state = ACCESS; end else if(start_flag)begin nxt_state = SETUP; end else if(!cmd_vld_i && pready_i)begin nxt_state = IDLE; end endcaseend
/*----------------------------------------------- -- update signal of output -------------------------------------------------*/always @ (posedge pclk_i or negedge prst_n_i) begin if (!prst_n_i) begin pwrite_o <= 1'b0; psel_o <= 1'b0; penable_o <= 1'b0; paddr_o <= {(CMD_ADDR_WIDTH){1'b0}}; pwdata_o <= {(CMD_DATA_WIDTH){1'b0}}; end else if (nxt_state == IDLE) begin psel_o <= 1'b0; penable_o <= 1'b0; end
else if(nxt_state == SETUP)begin psel_o <= 1'b1; penable_o <= 1'b0; paddr_o <= cmd_in_buf[CMD_WIDTH-CMD_RW_WIDTH-1:CMD_DATA_WIDTH]; //-- read if(cmd_in_buf[CMD_WIDTH-1:CMD_WIDTH-8] == RD_FLAG)begin pwrite_o <= 1'b0; end //-- write else begin pwrite_o <= 1'b1; pwdata_o <= cmd_in_buf[CMD_DATA_WIDTH-1:0]; end end
else if(nxt_state == ACCESS)begin penable_o <= 1'b1; endend
/*----------------------------------------------- -- update cmd_rd_data_buf -------------------------------------------------*/always @ (posedge pclk_i or negedge prst_n_i) begin if (!prst_n_i) begin cmd_rd_data_buf <= {(CMD_DATA_WIDTH){1'b0}}; end else if (pready_i && psel_o && penable_o) begin cmd_rd_data_buf <= prdata_i; endend
/*----------------------------------------------- -- update cmd_rd_data_o -------------------------------------------------*/always @ (posedge pclk_i or negedge prst_n_i) begin if (!prst_n_i) begin cmd_rd_data_o <= {(CMD_DATA_WIDTH){1'b0}}; end else begin cmd_rd_data_o <= cmd_rd_data_buf; endend
endmodule
模块设计的比较简单,只是实现APB的基本功能。下面讲一下设计重点:
·一定要做好功课在开始coding。
·Flow control,APB的上级模块,需要给到流控信号,告知APB master什么时候开始传输,什么时候结束。
·FSM,必须完全遵循AMBA的datasheet。
·时序对齐,和FSM一样,接口时序要和APB协议对齐。
·重点中的重点,pready的反压一定要逐级反压,不能直接送到APB master的上次模块,这样会丢数据。
testbench如下
`timescale 1ns/1nsmodule tb_apb; reg pclk_i ; reg prst_n_i ; reg [55:0] cmd_i ; reg cmd_vld_i ; wire [31:0] cmd_rd_data_o; wire [15:0] paddr_o ; wire pwrite_o ; wire psel_o ; wire penable_o ; wire [31:0] pwdata_o ; reg [31:0] prdata_i ; reg pready_i ; reg pslverr_i ;
initial begin // rst; pclk_i = 0; prst_n_i = 1; pslverr_i = 0; cmd_i = 56'b0; cmd_vld_i = 0; prdata_i = 32'b0; pready_i = 1; #20 prst_n_i = 0; #20 prst_n_i = 1;
// cmd_in_wr(cmd_i,56'h01_FF_EE_DD_CC_BB_AA); cmd_i = 56'h01_FF_EE_DD_CC_BB_AA; cmd_vld_i = 1 ; #20 cmd_vld_i = 0; #31 pready_i = 0; #80 pready_i = 1;
#90; //cmd_in_rd(cmd_i,56'h00_AA_BB_CC_DD_EE_FF,prdata_i,32'h12_34_56_78); cmd_i = 56'h00_AA_BB_CC_DD_EE_FF; cmd_vld_i = 1; #20 cmd_vld_i = 0; #30 pready_i = 0;
#60 pready_i = 1; prdata_i = 32'h12_34_56_78;
cmd_i = 56'h00_AA_BB_CC_DD_EE_FF; cmd_vld_i = 1; #20 cmd_vld_i = 0; #30 pready_i = 0;
#50 pready_i = 1; prdata_i = 32'h11_22_33_44;
end
always #10 pclk_i = ~pclk_i;
//-- RSTtask rst; begin pclk_i = 1; prst_n_i = 1; pslverr_i = 0; cmd_i = 56'b0; cmd_vld_i = 0; prdata_i = 32'b0; pready_i = 1; #20 prst_n_i = 0; #10 prst_n_i = 1; //cmd_i = 56'h01_FF_EE_DD_CC_BB_Ab; endendtask
//-- writetask cmd_in_wr; output [55:0] cmd; input [55:0] data;
begin cmd = data; cmd_vld_i = 1 ; #20 cmd_vld_i = 0; #20 pready_i = 0; #40 pready_i = 1; endendtask
//-- readtask cmd_in_rd; output [55:0] cmd; input [55:0] data ; output [31:0] prdata; input [31:0] rd_data;
begin cmd = data; cmd_vld_i = 1; #20 cmd_vld_i = 0; #20 pready_i = 0; #40 pready_i = 1; prdata = rd_data; endendtaskinitial begin #1000 $finish;endapb tb_apb( .pclk_i (pclk_i ), .prst_n_i (prst_n_i ), .cmd_i (cmd_i ), .cmd_vld_i (cmd_vld_i ), .cmd_rd_data_o(cmd_rd_data_o), .paddr_o (paddr_o ), .pwrite_o (pwrite_o ), .psel_o (psel_o ), .penable_o (penable_o ), .pwdata_o (pwdata_o ), .prdata_i (prdata_i ), .pready_i (pready_i ), .pslverr_i (pslverr_i ) );
initial begin $fsdbDumpfile("apb.fsdb"); $fsdbDumpvars ; $fsdbDumpMDA ;end
endmodule
makefile如下:
LAB_DIR = /home/*/apb
DFILES = $(LAB_DIR)/*.v
all:clean elab rungelab: vcs -full64 -LDFLAGS -Wl,-no-as-needed -debug_acc+all -timescale=1ns/1ns \ -fsdb -sverilog -l comp.log \ ${DFILES}
run: ./simv -l run.log
rung: ./simv -gui -l run.log
verdi: verdi ${DFILES} \ -ssf ./*.fsdb &
clean: rm -rf AN.DB \ rm -rf DVEfiles \ rm -rf csrc \ rm -rf simv.* \ rm -rf *simv \ rm -rf inter.vpd \ rm -rf ucli.key \ rm -rf *.log \ rm -rf verdiLog \ rm -rf novas* \ rm -rf *.fsdb
下面是仿真结果
好了,今天讲的主要就这么多,这个是基础,但也是干货,对以后设计AHB,AXI乃至NOC都非常有帮助。