多通道频率检测仪如何设计?(上篇)
扫描二维码
随时随地手机看文章
以下内容中,小编将对基于FPGA的多通道频率检测仪设计的相关内容进行着重介绍和阐述,本文仅为上篇,具体实现方案放在下篇文章中,大家可以按需检索。
一、频率检测仪工作原理
扫频仪中首先产生一个频率为50Hz的锯齿波,这个锯齿波在控制示波管电子束的水平方向扫描的同时,也用于控制一个高频正弦波振荡器的频率要求在锯齿波的正程期形成扫频信号,而在逆程期形成一个零电平的直流。
所以扫频仪输出的扫频信号是间歇的,由于扫频锯齿波的瞬时点平舆电子束在显示屏水平方向的几何位置相对应,而同时扫描锯齿波的瞬时电平也与扫频信号的瞬时频率相对应,故电子束在显示屏水平方向的几何位置与扫频信号的瞬时频率具有相对应关系,即扫频仪的水平标尺代表频率轴。
每一个扫描锯齿波被测网络的幅频特性就被显示一次,由于扫描频率为50Hz,故显示屏每秒将显示50次,这将在人眼看起来是连续发光的曲线。
二、频率检测仪多信道模型、滤波器仿真如何设计
1、多信道模型
当一个实信号经过A/D采样之后,再进行正交下变频处理,即可得到I、Q两路相位正交信号,它们所构成的是一个复信号。该复信号的信道化示意图如图1所示。
图1所示的信道是一种相互交叠的信道,它们涵盖了整个零中频信号的频率范围。一般情况下,多信道往往采用数字滤波器组来实现,这种结构设计过于复杂,同时还加大了后续信号处理的运算速度,对实时处理极为不利。目前,该结构已被高效DFT多相滤波器组结构所代替。
图2所示是一种具有普遍性的基于DFT多相滤波器组的信道化高效结构,从图2中可以看出,在滤波之前,先对数据进行D倍抽取可降低滤波过程的运算量,gn(m)是低通原型滤波器hLP(n)的多相分量,其阶数可减小到原来的1/D,因而DFT可以用FFT实现。事实上,在此结构中,系统的复杂度和数据速率大大降低,实时处理能力得到了提高。
2 滤波器的设计及仿真
低通型滤波器结构中的每个通道都是由原型低通滤波器乘以旋转因子形成的。根据要求,图3所示是由256阶原型低通滤波器形成的滤波器组及其信号输出仿真波形。该信号的有效带宽为300MHz,共分为32通道,每通道带宽为9.375MHz.如给此滤波器组送入频率?=28.1MHz的单频信号,那么,通过理论计算可知,信号应在第3号通道有输出。图3 (b)所示就是第2、3、4通道的输出仿真结果,可以看出,仅第3个通道有比较强的信号输出,这与理论上的计算结果是一致的。
以上就是小编这次想要和大家分享的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。