EMI如何产生、传播及优化解决?
扫描二维码
随时随地手机看文章
现代电力电子系统通常在开关模式下工作,产生了较大的电磁干扰(EMI),EMI问题一直是电力电子工程师头疼的问题,解决EMI问题是一项既困难又耗时的工作,本文将介绍EMI是如何产生、传播以及如何优化解决。
常见缩略语:
● EMC(Electromagnetic Compatibility):电磁兼容性
● EMI(Electromagnetic Interference):电磁干扰
● EMS(Electromagnetic Susceptibility):电磁抗扰度
● IEC(International Electrotechnical Commission):国际电工委员会
● FCC(Federal Communication Commission):美国联邦通信委员会
● CISPR:国际无线电干扰特别委员会
● CE:字母“CE”是法文句子的缩写,意指欧盟
● CCC(China Compulsory Certificate):中国强制性产品认证制度,又称3C认证。
电磁兼容性(EMC)是指设备或系统在电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰能力,电磁兼容(EMC)包含电磁干扰(EMI)和电磁抗扰度(EMS)。其包含的测试项目如图1所示。
电磁干扰限制可分为两个基本应用范畴:
● A类:适用于商业或工业装置环境,相应限制较为轻松。
● B类:适用于家用或住宅装置,相应限制较为严格。
B类限制约比A类限制低10dB,即发射振幅之比约为1:3(20×log(3)≈10dB)。市场销售的产品还需要满足一些重要的安规标准。在许多国家,电磁兼容标准和安规标准统一用一个区域认证标志来表示,如CE标志即欧洲认证标志,CCC标志即中国强制认证标志。该标志表示产品符合电磁兼容标准和安规标准。
历史上普遍接受的国际电磁干扰标准是CISPR-22,美国的电磁干扰标准是FCC,CISPR-22与FCC有所不同,但一般来说如果电源符合CISPR-22标准,那么它也符合FCC标准。总之CISPR-22标准已经成为全世界都遵守的基本标准。汽车上的电磁干扰标准是CISPR-25,相对CISPR22来说CISPR-25标准限制值更低并且额外对FM频段做了很严的限制要求。具体传导测试限制要求如图2所示。
所示电磁干扰的辐射测试普遍采用天线接收法测试,相比于CISPR22来说CISPR25额外增加了150KHz ~ 30MHz的辐射测试,这部分测试频段覆盖了DCDC的工作频率范围,是辐射测试的难点。另外CISPR-25辐射测试采用1M法天线距离更近,测试接收的信号更强。
对于设备来说DCDC开关电源是最常见的噪声源,而通常又不易受干扰,所以DCDC的EMC问题主要就是EMI问题。以Buck电源为例,DCDC芯片开关过程中产生电压和电流的变化,包含了较快的di/dt和dv/dt噪声分量,其开关噪声不仅包含开关次和倍频频率段的噪声,另外其开关速度越低,高频噪声分量衰减越大。噪声分为差模噪声和共模噪声,差模噪声是LN线之间的电位差,共模噪声是待测零部件的LN线和参考地之间的电位差。DCDC电源EMI主要来源于电流和电压跳变,通过共模和差模的形式耦合到接收器上。
所示是Buck开关电源的噪声产生和耦合路径,从传导路径来说开关节点产生的差模干扰通过输入电容滤波后会直接传到输入端,共模干扰通过开关节点对地的耦合再通过LISN端检测到。从辐射的路径来看主要是差模的功率电流回路产生的,当然共模干扰也会产生部分辐射干扰。因此在设计电路时减小功率开关电流回路对传导辐射干扰有很大的帮助。
在讲述电磁干扰原理之前,我们现了解下EMI的产生原因:
1、EMI的产生原因
各种形式的电磁干扰是影响电子设备兼容性的主要原因。因此,了解电磁干扰的产生原因是抑制电磁干扰,提高电子产品电磁兼容性的重要前提。电磁干扰的产生可以分为:
内部干扰内部电子元件之间的相互干扰
1)工作电源通过线路的分布电源和绝缘电阻产生漏电造成的干扰。
2)信号通过地线、电源和传输导线的阻抗互相耦合,或导线之间的互感造成的影响。
3)设备或系统内部某些元件发热,影响元件本身及其他元件的稳定性造成的干扰。
4)大功率和高点压部件产生的磁场、电场通过耦合影响其他部件造成的干扰。
外部干扰——电子设备或系统以外的因素对线路、设备或系统的影响。
1)外部高电压、电源通过绝缘漏电而干扰电子线路、设备或系统。
2)外部大功率的设备在空间产生很强的磁场,通过互感耦合干扰电子线路、设备或系统。
3)空间电磁对电子线路或系统产生的干扰。
4)工作环境温度不稳定,引起电子线路、设备或系统内部元器件参数改变造成的干扰。
2、电磁干扰的传播途径
当干扰源频率较高,且干扰信号波长比***扰对象结构尺寸小,则干扰信号可认为是辐射场,以平面电磁波形式向外辐射电磁场能量,并进入***扰对象的通路,干扰信号以漏电和耦合的形式,通过绝缘电介质,经公共阻抗的耦合进入***扰系统。干扰信号可通过直接传导方式进入系统。
3、改善电磁兼容性的措施
要改善电子产品的电磁兼容性,接地、屏蔽和滤波是抑制EMI的基本方法。
1)接地
接地就是一个系统内电气与电子元件至地参考点之间的电传导路径。接地除了提供设备的安全保护地以外,还提供设备运行所必需的信号参考地。理想的接地平面是一个零电位、零阻抗的物理体,它可作为电路中所有信号点评的参考点,并且任何干扰信号通过它,都不会产生电压降。但是,理想的接地平面是不存在的,这就需要我们考虑和分析地电位分布,进行接地设计与研究,找出合适的接地电位。接地的方式可分为:浮地、单点接地、多点接地、混合接地。对于电路系统来说可选择:电路接地、电源接地和信号接地等方法。
2)屏蔽
屏蔽就是用导电或电磁体的封闭面将其内外两侧空间进行电磁性隔离。主要抑制过空间的辐射干扰。分为电磁屏蔽、电场屏蔽和磁场屏蔽。
屏蔽的设计既可以针对干扰源,也可以针对***扰体。对于干扰源,设计屏蔽部分可以使其减小对周边其他设备的影响;对于***扰体,则可减小外界干扰电磁波对本设备的影响。
主动屏蔽:把干扰源置于屏蔽体之内,防止电磁能量和干扰信号泄漏到外部空间。
被动屏蔽:把敏感设备置于屏蔽体内,使其不受外部干扰的影响。
3)滤波
滤波的含义是指从混有噪声或干扰的原信号中,提取到有用信号的一门技术,滤波器是实现滤波的元器件。
事实上,器件在工作时,也会产生各种各样的噪声。开关电源就是一种很强的干扰源,它产生的EMI信号即占有很宽的频率范围,又具有较大的振幅。这些噪声随着信号的传播,对下一级的元器件产生了干扰,这样的干扰一级级的累积,最终可能导致整个电路的不正常工作。假设在产生噪声大,对下级器件干扰明显的器件输出信号之后做一次滤波,将噪声信号滤掉,它对下级产生的干扰便会降低,系统便能稳定的工作。