当前位置:首页 > 模拟 > 模拟技术
[导读]在下述的内容中,小编将会对仪表放大器公式进行详细的推导,如果仪表放大器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

在下述的内容中,小编将会对仪表放大器公式进行详细的推导,如果仪表放大器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

一、仪表放大器

仪表放大器(英语:instrumentation amplifier或称精密放大器简称INA),差分放大器的一种改良,具有输入缓冲器,不需要输入阻抗匹配,使放大器适用于测量以及电子仪器上。

仪表放大器电路主要由两级差分放大器电路构成。其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。在R1=R2,R3=R4,Rf=R5的条件下,例子中电路的增益为:G=(1+2R1/Rg)Rf/R3。由公式可见,电路增益的调节可以通过改变Rg阻值实现。

二、仪表放大器公式推导

这里主要是关于仪表放大器的工作原理并计算输出电压增益。如下图所示,我们可以将设计大致分为 2 个部分:第 1 级和第 2 级(差分放大器)。Vout1 和 Vout2 支路连接到第二级差分放大器设计的输入。因此,我们需要首先找到 Vout1 和 Vout2,然后将差分放大器特性应用于这些输入。

第1级:

该级包含 2 个放大器和 3 个电阻,连接在输入 V1 和 V2 之间,输出 Vout1 和 Vout2。

首先,我们来看看第一级上放大器的V-节点。假设放大器是理想的,因此它们的开环增益是无限的。因此,我们可以假设 V +处的电压等于 V -处的电压。因此,我们可以写成 V – = V + = V1。类似地,我们可以为第一级的底部放大器写 V – = V + = V2。

如图所示,没有电流可以从其输入端流入放大器,因为运算放大器在其反相和非反相输入端具有无限的输入电阻。因此,来自 R1 的电流除了流向 Rg 外,无处可去。

同样,来自 Rgain 的电流必须流过底部放大器的 R1。因此,从上电阻 R1、Rgain 和下电阻 R1 流出的电流是相同的电流。现在我们设置了这些,我们可以使用差异信号找到 Id 表达式。


定义 V2-V1 = Vd,差分输入信号。因此,Vout1 – Vout2 之间的电压降可以简单地写为 Id.R


第2级(差分放大器级)

现在我们找到了 Vout2-Vout1,我们可以进入第二阶段。Vout2-Vout1 是第二级的输入,它实际上是一个差分放大器。第二级实际上是一个差分放大器,差分输入为 Vout2 – Vout1。

为了简化我们的计算,首先我们将考虑一个简单的差分放大器并找到它的电压增益。然后申请


我们将在第二阶段找到结果。

考虑下图 3 中的差分放大器。让我们计算输入为 V1 和 V2 的差分放大器的 Vout,然后将结果替换为上面的表达式。

我们在 V –和 V +节点应用基尔霍夫电流定律。需要注意的是,运算放大器是理想的,因此为简单起见,我们可以写成 V – = V + = Vx。

V -节点处的 KCL :

将这 2 个方程相互减去即可去除 Vx。

现在,回到我们的原始电路,差分放大器级(第二级)的 V1=Vout1 和 V2=Vout2。所以,

其中 Vd = V2-V1,正如我们从上面的第一阶段发现的那样。

我们得到:

其中 Vd = V2-V1,差分输入。

以上所有内容便是小编此次为大家带来的所有介绍,如果你想了解更多有关仪表放大器的内容,不妨在我们网站进行探索哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭