LLC谐振变换器与传统谐振变换器相比优势
扫描二维码
随时随地手机看文章
1 摘要
提高功率密度已经成为电源变换器的发展趋势。为达到 这个目标,需要提高开关频率,从而降低功率损耗、系 统整体尺寸以及重量。对于当今的开关电源(SMPS)而 言,具有高可靠性也是非常重要的。零电压开关(ZVS) 或零电流开关(ZCS) 拓扑允许采用高频开关技术,可以 大限度地降低开关损耗。ZVS拓扑允许工作在高频开 关下,能够改善效率,能够降低应用的尺寸,还能够降 低功率开关的应力,因此可以改善系统的可靠性。LLC 谐振半桥变换器因其自身具有的多种优势逐渐成为一种主流拓扑。这种拓扑得到了广泛的应用,包括高端服务 器、平板显示器电源的应用。但是,包含有LLC谐振半 桥的ZVS桥式拓扑,需要一个带有反向快速恢复体二极 管的MOSFET,才能获得更高的可靠性。
在功率变换市场中,尤其对于通信/服务器电源应用,不 断提高功率密度和追求更高效率已经成为具挑战性的 议题。对于功率密度的提高,普遍方法就是提高开关 频率,以便降低无源器件的尺寸。零电压开关(ZVS)拓 扑因具有极低的开关损耗、较低的器件应力而允许采用 高开关频率以及较小的外形,从而越来越受到青睐 。这些谐振变换器以正弦方式对能量进行处理,开 关器件可实现软开闭,因此可以大大地降低开关损耗和 噪声。在这些拓扑中,相移ZVS全桥拓扑在中、高功率 应用中得到了广泛采用,因为借助功率MOSFET的等效 输出电容和变压器的漏感可以使所有的开关工作在ZVS 状态下,无需额外附加辅助开关。然而,ZVS范围非常 窄,续流电流消耗很高的循环能量。近来,出现了关于 相移全桥拓扑中功率MOSFET失效问题的讨论。这种 失效的主要原因是:在低反向电压下,MSOFET体二极 管的反向恢复较慢。另一失效原因是:空载或轻载情况 下,出现Cdv/dt直通。在LLC谐振变换器中的一个潜在 失效模式与由于体二极管反向恢复特性较差引起的直通 电流相关。即使功率MOSFET的电压和电流处于安全工作区域,反向恢复dv/dt和击穿dv/dt也会在如启动、 过载和输出短路的情况下发生。
2 LLC谐振半桥变换器
LLC谐振变换器与传统谐振变换器相比有如下优势:
■宽输出调节范围,窄开关频率范围
■?即使空载情况下,可以保证ZVS
■?利用所有的寄生元件,来获得ZVS
LLC谐振变换器可以突破传统谐振变换器的局限。正是 由于这些原因,LLC谐振变换器被广泛应用在电源供电 市场。LLC谐振半桥变换器拓扑如图1所示,其典型波 形如图2所示。图1中,谐振电路包括电容Cr和两个与之 串联的电感Lr和Lm。作为电感之一,电感Lm表示变压器 的励磁电感,并且与谐振电感Lr和谐振电容Cr共同形成 一个谐振点。重载情况下,Lm会在反射负载RLOAD的作用 下视为完全短路,轻载情况下依然保持与谐振电感Lr串 联。因此,谐振频率由负载情况决定。Lr 和Cr决定谐振 频率fr1,Cr和两个电感Lr 、Lm决定第二谐振频率fr2,随 着负载的增加,谐振频率随之增加。谐振频率在由变压 器和谐振电容Cr决定的大值和小值之间变动,如公 式1、2所示。
3 LLC谐振变换器的失效模式
启动失效模式
图3和图4给出了启动时功率MOSFET前五个开关波形。 在变换器启动开始前,谐振电容和输出电容刚好完全放电。与正常工作状况相比,在启动过程中,这些空电容会使低端开关Q2的体二极管深度导通。因此流经开关 Q2体二极管的反向恢复电流非常高,致使当高端开关 Q1导通时足够引起直通问题。启动状态下,在体二极管 反向恢复时,非常可能发生功率MOSFET的潜在失效。 图5给出了LLC谐振半桥变换器启动时的简化波形。
图6给出了可能出现潜在器件失效的工作模式。在t0~t1时 段,谐振电感电流Ir变为正。由于MOSFET Q1处于导通 状态,谐振电感电流流过MOSFET Q1 沟道。当Ir开始上 升时,次级二极管D1导通。因此,式3给出了谐振电感 电流Ir的上升斜率。因为启动时vc(t)和vo(t)为零,所有的 输入电压都施加到谐振电感Lr的两端。这使得谐振电流剧增。
在t1~ t 2时段,MOSFET Q1门极驱动信号关断,谐振电感 电流开始流经MOSFET Q2的体二极管,为MOSFET Q2产生 ZVS条件。这种模式下应该给MOSFET Q2施门极信号。由 于谐振电流的剧增,MOSFET Q2体二极管中的电流比正 常工作状况下大很多。导致了MOSFET Q2的P-N结上存储 更多电荷。
在t2~t3时段,MOSFET Q2施加门极信号,在t0~t1时段 剧增的谐振电流流经MOSFET Q2沟道。由于二极管D1 依然导通,该时段内谐振电感的电压为:
。该电压使得谐振电流ir(t)下降。然而,
很小,并不足以在这个时间段 内使电流反向。在t3时刻,MOSFET Q2电流依然从源 极流向漏极。另外,MOSFET Q2的体二极管不会恢复,因为漏源极之间没有反向电压。下式给出了谐振 电感电流Ir的上升斜率:
在t3~t4时段,谐振电感电流经MOSFET Q2体二极管续 流。尽管电流不大,但依然给MOSFET Q2的P-N结增加 储存电荷。
-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
由于多种不同的原因,可能需要在电流检测放大器(CSA)的输入或输出端进行滤波。今天,我们将重点谈谈在使用真正小的分流电阻(在1 m?以下)时,用NCS21xR和NCS199AxR电流检测放大器实现滤波电路。低于1 m?的分流电阻具有并联电感,在电流检测线上会引起尖峰瞬态事件,从而使CSA前端过载。我们来谈谈滤除这些特定的尖峰瞬态事件的主要考虑因素。
在某些应用中,被测量的电流可能具有固有噪声。在有噪声信号的情况下,电流检测放大器输出后的滤波通常更简单,特别是当放大器输出连接到高阻抗电路时。放大器输出节点在为滤波器选择组件时提供了最大的自由度,并且实现起来非常简单,尽管它可能需要后续的缓冲。
当分流电阻值减小时,并联电感对频率响应有显著影响。在小于1 m?的情况下,并联电感产生传递函数中的零点,通常导致在100 kHz的低频率下产生拐角频率。这种电感增加了电流检测线路上高频尖峰瞬态事件的幅值,从而使任何并联电流检测集成电路(IC)的前端过载。这个问题必须通过在放大器输入端进行滤波来解决。请注意,无论制造商如何声称,所有电流检测IC都容易受到此问题的影响。即使尖峰频率高于器件的额定带宽,也需要在器件的输入端进行滤波以解决此问题。
在众多电源应用(例如电压和电流)中,宽工作范围负载不可或缺。LED 照明和电池充电应用可作为典型 示例。凭借本身高效和用户友好型基波分析法 (FHA) 设计,LLC 拓扑结构备受青睐。但也存在负载电流范围变宽时电压工作范围受限等缺点。此外,尽管在串联谐振工作点附近采用 FHA 方法进行分析十分精确,但当负载范围(电压和电流)明显变宽时,可能就会失效。
作为另一种负载谐振拓扑结构,LCC 可用于宽范围负载工作的替代解决方案。但是,LCC 拓扑结构的设计和简单的 LLC 结构不同,因为 LCC 很少在串联谐振点附近工作,整个电路可实现线性化。因此,采用FHA 方法会导致精度不够,从而需要在谐振回路的迭代优化上花费更多的设计时间和精力。
LCC优点
~由于电流源特性类似,电压范围更宽。
~在相同的频率范围内,负载电流范围更宽,这意味着具有宽输出电压的 LED 驱动器可在不使用突发模式的情况下深度调光,在一些室内电源调光深度可达0.1%。
~变压器不需要磨气隙,节约成本
~抗输出短路的稳健性
~对寄生电容的抗扰性 ,LCC因为有Cp并联在变压器绕组上,对寄生电容不敏感
~更容易集成变压器设计
LCC缺点
~通常比LLC需要更大的谐振电感
~强制性输出 OVP
~轻负载损失高于 LLC
~需要使用额外的并联谐振电容器