当前位置:首页 > 模拟 > 模拟技术
[导读]以下内容中,小编将对三运放仪表放大器的放大倍数进行分析,希望本文能帮您增进对三运放仪表放大器的了解,和小编一起来看看吧。

以下内容中,小编将对三运放仪表放大器的放大倍数进行分析,希望本文能帮您增进对三运放仪表放大器的了解,和小编一起来看看吧。

一、三运放仪表放大器

三运放仪表放大器是一种特殊设计的放大器,基于三个运算放大器(运放)构成,用于测量和放大微弱信号。它具有高增益、高输入阻抗、低失真和稳定性等特点,能够提供精确可靠的信号放大与处理。

三运放仪表放大器通常由三个运放和一些外部电阻、电容等元件组成。其中一个运放用于信号放大,另外两个运放则用于提供参考电压和稳定电流源。这种结构使得仪表放大器具有较高的共模抑制比和温度稳定性。

三运放仪表放大器广泛应用于各个领域,如工业自动化、医疗仪器、测试设备等。它常用于测量、控制和监测系统中,能够放大微弱的传感器信号,提供精确和可靠的测量结果。

三运放仪表放大器是一种常用的放大电路,由三个运算放大器(Op-Amp)组成。它通常用于放大微弱信号并提供较高的增益和精确度,常见于测量、控制和仪表等应用中。

二、三运放仪表放大器的放大倍数分析

三运放仪表放大器的电路结构如下图所示,可以将整个电路分为两级:第一级为两个同相比例运算电路,第二级为差分运算电路。

1、第一级电路分析

根据运放的虚短可以得到:

三运放仪表放大器的放大倍数详细分析!

同时根据虚断可以得到流经电阻R1、R2、R3的电流近似相等,记为I。

易知

三运放仪表放大器的放大倍数详细分析!

此时可以得到

三运放仪表放大器的放大倍数详细分析!

因此,第一级电路的电压放大倍数

三运放仪表放大器的放大倍数详细分析!

值得注意的是,该放大倍数为差模电压放大倍数。

当输入信号为共模信号时,

三运放仪表放大器的放大倍数详细分析!

因此,流经电阻R3的电流

三运放仪表放大器的放大倍数详细分析!

此时两个运放相当于两个电压跟随器,因此其共模增益为1。

根据上述分析可以得到:

(1)输入端的两个同相比例运算电路可以提高整个电路的输入阻抗;

(2)差模增益可调,共模增益始终为1,提高差模增益可以提高共模抑制比。

2、第二级电路分析

假设R4=R5、R6=R7,此时根据差分放大电路的放大倍数计算公式可以得到第二级电路的差模放大倍数

三运放仪表放大器的放大倍数详细分析!

因此该仪表放大器的差模放大倍数

三运放仪表放大器的放大倍数详细分析!

经由小编的介绍,不知道你对三运放仪表放大器是否充满了兴趣?如果你想对它有更多的了解,不妨尝试在我们的网站里进行搜索哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在下述的内容中,小编将会对仪表放大器公式进行详细的推导,如果仪表放大器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 放大器 仪表放大器

一直以来,差分放大器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编本文将介绍光激活差分放大器电路的设计,详细内容请看下文。

关键字: 放大器 差分放大器

本文将进行运算放大器负压产生电路设计分析,通过这篇文章,小编希望大家可以对该电路的相关情况以及信息有所认识和了解,详细内容如下。

关键字: 放大器 运算放大器 电路

以下内容中,小编将对以往在设计反相放大器的时候碰见的一个设计坑点进行介绍,希望本文能帮您增进对反相放大器的了解,和小编一起来看看吧。

关键字: 放大器 反相放大器

通过这篇文章,小编希望大家可以对推挽放大器的工作机制以及推挽放大器常用的两个设计电路有所认识和了解

关键字: 放大器 推挽放大器

今天,小编将在这篇文章中为大家带来推挽放大器工作原理和实际应用电路图的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 放大器 推挽放大器

选择一个合适的比较器必须精通比较器的应用场合、原理及类型。这篇文章就讲解了关于比较器的原理和应用。

关键字: 比较器 放大器 LM339

恶性肿瘤一直是困扰人类健康的公共卫生问题,肿瘤电场治疗是当前医疗市场上热门的一种创新技术。这种技术是通过穿戴设备,对目标位置肿瘤发出低强度交变电场来干扰癌细胞,让它们发生紊乱,无法正常分裂增殖,从而实现抗癌效果。该疗法有...

关键字: 滤波器 半导体 放大器

CSA52x系列芯片,引领电流检测技术新高度

关键字: 放大器 电动工具 PoE

为PCB设计降低电磁干扰(EMI)的最佳方法之一就是灵活地使用运算放大器(OP Amp)。遗憾的是,在许多应用中,运算放大器用于降低EMI的这个作用通常被忽略了。

关键字: PCB设计 放大器 PCB
关闭