当前位置:首页 > 物联网 > 智能应用
[导读]硅成为制造半导体产品的主要原材料,广泛应用于集成电路等低压、低频、低功率场景。但是,第一代半导体材料难以满足高功率及高频器件需求。

第一代半导体主要有硅和锗,由于硅的自然储量大、制备工艺简单,硅成为制造半导体产品的主要原材料,广泛应用于集成电路等低压、低频、低功率场景。但是,第一代半导体材料难以满足高功率及高频器件需求。

砷化镓是第二代半导体材料的代表,较高的电子迁移率使其应用于光电子和微电子领域,是制作半导体发光二极管和通信器件的核心材料。但砷化镓材料的禁带宽度较小、击穿电场低且具有毒性,无法在高温、高频、高功率器件领域推广。

第三代半导体材料以碳化硅、氮化镓为代表,与前两代半导体材料相比最大的优势是较宽的禁带宽度,保证了其可击穿更高的电场强度,适合制备耐高压、高频的功率器件,是电动汽车、5G 基站、卫星等新兴领域的理想材料。

碳化硅是第三代半导体产业发展的重要基础材料,碳化硅功率器件以其优异的耐高压、耐高温、低损耗等性能,能够有效满足电力电子系统的高效率、小型化和轻量化要求。

碳化硅MOSFET具有高频高效,高耐压,高可靠性。可以实现节能降耗,小体积,低重量,高功率密度等特性,在新能源汽车、光伏发电、轨道交通、智能电网等领域具有明显优势。

一. 碳化硅MOSFET常见封装TO247

碳化硅MOSFET是一种基于碳化硅半导体材料的场效应晶体管。它的工作原理类似于传统的金属氧化物半导体场效应晶体管(MOSFET)。主要由以下三个部分组成:

栅极(Gate): 栅极是用于控制MOSFET导通的部分。当施加正电压时,栅极与通道之间形成电场,控制通道的导电性。

源极(Source)和漏极(Drain): 源极和漏极分别是MOSFET的输入和输出端。通过控制栅极电压,调节源极和漏极之间的电流流动。

通道(Channel): 通道是源极和漏极之间的导电路径。在碳化硅MOSFET中,通道由碳化硅材料构成,具有较高的载流子迁移率和耐压能力。

碳化硅MOSFET的工作原理可以简述如下:当栅极施加正电压时,形成电场,使得通道中的载流子(电子或空穴)移动,导致源极和漏极之间形成导电路径。通过调节栅极电压,可以控制通道中的载流子浓度,从而控制MOSFET的导通程度。

二. 碳化硅MOSFET分平面结构和沟槽结构

三.相对应于硅基MOSFET以及IGBT,碳化硅MOSFTE有以下优点:

01

╱ 高工作频率 ╱

传统MOSFET工作频率在60KHZ左右,而碳化硅MOSFET在1MHZ,甚至更高

用途:高频工作,可以减小电源系统中电容以及电感或变压器的体积,降低电源成本,让电源实现小型化,美观化。从而实现电源的升级换代。

02

╱ 低导通阻抗 ╱

碳化硅MOSFET单管最小内阻可以达到几个毫欧,这对于传统的MOSFET看来是不可想象的。市场量产碳化硅MOSFET最低内阻在16毫欧。

用途:轻松达到能效要求,减少散热片使用,降低电源体积和重量,电源温度更低,可靠性更高。

03

╱ 耐压高 ╱

碳化硅MOSFET目前量产的耐压可达3300V,最高耐压6500V,一般硅基MOSFET和IGBT常见耐压耐压900V-1200V。

04

╱ 耐高温 ╱

碳化硅MOSFET芯片结温可达300度,可靠性,稳定性大大高于硅基MOSFET,

综上所述:使用碳化硅MOSFET可以让电源实现高效率,小体积,在一些高温,高压环境,在一定优势。

四.碳化硅MOSFET的综合特性

SiC器件的结构和特征

SiC器件漂移层的阻抗比Si器件低,不需要进行电导率调制就能够以高频器件结构的MOSFET实现高耐压和低阻抗。而且MOSFET原理上不产生尾电流,所以用SiC MOSFET替代IGBT时,能够明显地减少开关损耗,并且实现散热部件的小型化。另外,SiC MOSFET能够在IGBT不能工作的高频条件下驱动,从而也可以实现被动器件的小型化。与600V~1200V的Si MOSFET相比,SiC MOSFET的优势在于芯片面积小(可以实现小型封装),而且体二极管的恢复损耗非常小。

SiC Mosfet的导通电阻

SiC 的绝缘击穿场强是Si 的10倍,所以能够以低阻抗、薄厚度的漂移层实现高耐压。因此,在相同的耐压值的情况下,SiC 可以得到标准化导通电阻(单位面积导通电阻)更低的器件。例如900V时,SiC‐MOSFET 的芯片尺寸只需要Si‐MOSFET 的35分之1、SJ‐MOSFET 的10分之1,就可以实现相同的导通电阻。不仅能够以小封装实现低导通电阻,而且能够使门极电荷量Qg、结电容也变小。目前SiC 器件能够以很低的导通电阻轻松实现1700V以上的耐压。因此,没有必要再采用IGBT这种双极型器件结构(导通电阻变低,则开关速度变慢) ,就可以实现低导通电阻、高耐压、快速开关等各优点兼备的器件。

3Vd-Id特性

SiC‐MOSFET 与IGBT 不同,不存在开启电压,所以从小电流到大电流的宽电流范围内都能够实现低导通损耗。而Si MOSFET 在150℃时导通电阻上升为室温条件下的2 倍以上,与Si MOSFET 不同,SiC MOSFET的上升率比较低,因此易于热设计,且高温下的导通电阻也很低。

驱动门极电压和导通电阻

SiC‐MOSFET 的漂移层阻抗比Si MOSFET 低,但是另一方面,按照现在的技术水平,SiC MOSFET的MOS 沟道部分的迁移率比较低,所以沟道部的阻抗比Si 器件要高。因此,越高的门极电压,可以得到越低的导通电阻(Vgs=20V 以上则逐渐饱和)。如果使用一般IGBT 和Si MOSFET 使用的驱动电压Vgs=10~15V 的话,不能发挥出SiC 本来的低导通电阻的性能,所以为了得到充分的低导通电阻,推荐使用Vgs=18V左右进行驱动。负压建议-3左右。现推出低导通内阻的碳化硅MOSFET,Vgs=15V进行驱动,后续推出Vgs=12V进行驱动碳化硅MOSFET,让驱动电压和硅基器件一至。

Vg-Id特性

SiC MOSFET 的阈值电压在数mA 的情况下定义的话,与Si‐MOSFET 相当,室温下大约3V(常闭)。但是,如果流通几个安培电流的话,需要的门极电压在室温下约为8V 以上,所以可以认为针对误触发的耐性与IGBT 相当。温度越高,阈值电压越低。

汽车原始设备制造商对电力电子系统的要求对此类系统的开发人员来说是一个巨大的挑战。特别是空间要求、重量和效率起着重要作用。此外,整个系统的成本和产品设计阶段的工作量要保持在较低水平,同时还必须保证产品质量和操作安全。

传统电力电子器件的效率基于硅半导体技术,通常在85%至95%之间变化。这意味着在每次功率转换期间,大约10%的电能会以热量的形式损失。一般来说,可以说电力电子的效率主要受到功率半导体性能特点的限制。由于其物理特性,半导体材料SiC具有满足这些市场趋势要求的巨大潜力。

与硅半导体器件相比,SiC的电场强度高出近十倍(2.8MV/cm对0.3MV/cm)。这种非常坚硬的SiC基板具有更高的电场强度,因此可以将更薄的层结构(即所谓的外延层)施加到SiC衬底上。这相当于硅外延层层厚度的十分之一。在相同的阻断电压下,SiC的掺杂浓度可以达到比Si对应物高两个数量级。因此,组件的表面电阻(RonA)降低,从而大大降低了直通损耗。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

扩大研发和生产能力,支持未来技术的发展

关键字: 碳化硅 氮化镓

持续精进的渲染加速解决方案,带来更凉爽更沉浸的高帧游戏体验 上海2024年6月27日 /美通社/ -- 专业的图像和显示处理方案提供商逐点半导体今日宣布,新发布的一加 Ac...

关键字: 半导体 一加 视觉处理器 CE

6月28日消息,日前,中国信息通信研究院(简称“中国信通院”)宣布,完成对HarmonyOS NEXT隐私保护能力的测评。

关键字: 华为 12nm EDA 半导体

6月28日消息,在近日的投资者关系平台上互动中,龙芯中科提到了即将发布的下一代服务器处理器龙芯3C6000。

关键字: 龙芯CPU 半导体 架构 CPU

【2024年6月27日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)将率先为客户提供完整的产品碳足迹(PCF)数据,在半导体行业发挥先锋作用。公司的最终目标是提供全部产品组合的碳...

关键字: 低碳化 碳足迹 半导体

6月27日消息,龙芯中科基本上每个月都会公布LoongArch龙架构在桌面、服务器的产品适配情况,2024年5月又新增了53家企业的105款产品。

关键字: 龙芯CPU 半导体 架构 CPU

6月26日消息,在2024 MWC上海期间,华为常务董事、ICT基础设施业务管理委员会主任汪涛在大会上发表了“加速5G-A发展,开启移动AI时代”的主题演讲。

关键字: 华为 12nm EDA 半导体

2024年6月26日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 代理商贸泽电子 (Mouser Electronics) 宣布连续第六年荣获Molex颁发的亚太区 (APS) 年度电子目录代理商大...

关键字: 半导体 电子元器件 贸泽

通过与装配和测试合作伙伴共同工作, Nordic现在使用再生塑料组件包装卷轴

关键字: 半导体 人工智能 机器学习

在当前的半导体技术领域中,FD-SOI(Fully Depleted Silicon-On-Insulator,全耗尽绝缘层上硅)技术以其独特的优势备受关注。FPGA(Field Programmable Gate Ar...

关键字: 半导体 FD-SOI 集成电路
关闭