当前位置:首页 > 测试测量 > 测试测量
[导读]SiC 具有宽的禁带宽度、高击穿电场、高热传导率和高电子饱和速率的物理性能,使其有耐高温、耐高压、高频、大功率、抗辐射等优点,可降低下游产品能耗、减少终端体积

SiC 具有宽的禁带宽度、高击穿电场、高热传导率和高电子饱和速率的物理性能,使其有耐高温、耐高压、高频、大功率、抗辐射等优点,可降低下游产品能耗、减少终端体积。碳化硅的禁带宽度大约为 3.2eV,硅的宽带宽度为 1.12eV,大约为碳化硅禁带宽度的 1/3,这也就说明碳化硅的耐高压性能显著好于硅材料。

此外,碳化硅的热导率大幅高于其他材料,从 而使得碳化硅器件可在较高的温度下运行,其工作温度高达 600℃,而硅器件的极限温度仅为 300℃;另一方面,高热导率有助于器件快速降温,从而下游企业可简化器件终端的冷却系统,使得器件轻量化。根据 CREE 的数据,相同规格的碳化硅基 MOSFET 尺寸仅为硅基MOSFET 的 1/10。

同时,碳化硅具有较高的能量转换效率,且不会随着频率的提高而降低,碳化硅器件的工作频率可以达到硅基器件的 10 倍,相同规格的碳化硅基 MOSFET 总能量损耗仅为硅基 IGBT 的 30%。碳化硅材料将在高温、高频、高频领域逐步替代硅,在 5G 通信、航空航天、新能源汽车、智能电网领域发挥重要作用。

碳化硅产业链可分为三个环节:碳化硅衬底材料的制备、外延层的生长、器件制造以及下游应用市场,通常采用物理气相传输法(PVT 法)制备碳化硅单晶,再在衬底上使用化学气相沉积法(CVD 法)生成外延片,最后制成器件。在 SiC 器件的产业链中,主要价值量集中于上游碳化硅衬底(占比 50%左右)。

碳化硅衬底根据电阻率划分:半绝缘型碳化硅衬底:指电阻率高于 105Ω·cm 的碳化硅衬底,其主要用于制造氮化镓微波射频器件。微波射频器件是无线通讯领域的基础性零部件,中国大力发展 5G 技术推动碳化硅衬底需求释放。

导电型碳化硅衬底:指电阻率在 15~30mΩ·cm 的碳化硅衬底。由导电型碳化硅衬底生长出的碳化硅外延片可进一步制成功率器件,功率器件是电力电子变换装置核心器件,广泛应用于新能源汽车、光伏、智能电网、轨道交通等领域。汽车电动化趋势利好 SiC发展。

碳化硅应用场景根据产品类型划分:

1、射频器件:射频器件是在无线通信领域负责信号转换的部件,如功率放大器、射频开关、滤波器、低噪声放大器等。碳化硅基氮化镓射频器件具有热导率高、高频率、高功率等优点,相较于传统的硅基 LDMOS 器件,其可以更好地适应 5G 通信基站、雷达应用等领域低能耗、高效率要求。

2、功率器件:又称电力电子器件,主要应用于电力设备电能变换和控制电路方面的大功率电子器件,有功率二极管、功率三极管、晶闸管、MOSFET、IGBT 等。碳化硅基碳化硅器件在 1000V 以上的中高压领域有深远影响,主要应用领域有电动汽车/充电桩、光伏新能源、轨道交通、智能电网等。

3、新能源汽车:电动汽车系统涉及功率半导体应用的组件有电机驱动系统、车载充电系统(On-board charger,OBC)、车载 DC/DC 及非车载充电桩。其中,电动车逆变器市场碳化硅功率器件应用最多,碳化硅模块的使用使得整车的能耗更低、尺寸更小、行驶里程更长。目前,国内外车企均积极布局碳化硅器件应用,以优化电动汽车性能,特斯拉、比亚迪、丰田等车企均开始采用碳化硅器件。随着碳化硅功率器件的生产成本降低,碳化硅在充电桩领域的应用也将逐步深入。

4、光伏发电:目前,光伏逆变器龙头企业已采用碳化硅 MOSFET 功率器件替代硅器件。根据中商情报网数据,使用碳化硅功率器件可使转换效率从 96%提高至 99%以上,能量损耗降低 50%以上,设备循环寿命提升 50 倍,从而带来成本低、效能高的好处。

5、智能电网:国家大力发展新基建,特高压输电工程对碳化硅功率器件具有重大需求。其在智能电网中的主要应用场景包括:高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置。相比其他电力电子装置,电力系统要求更高的电压、更大的功率容量和更高的可靠性,碳化硅器件突破了硅基功率半导体器件在大电压、高功率和高温度方面的限制所导致的系统局限性,并具有高频、高可靠性、高效率、低损耗等独特优势,在固态变压器、柔性交流输电、柔性直流输电、高压直流输电及配电系统等应用方面推动智能电网的发展和变革。

6、轨道交通:轨道交通对其牵引变流器、辅助变流器、主辅一体变流器、电力电子变压器、电源充电机等装置

7、射频通信:碳化硅基氮化镓射频器件同时具备碳化硅的高导热性能和氮化镓在高频段下大功率射频输出的优势,能够满足 5G 通讯对高频性能和高功率处理能力的要求,逐步成为 5G功率放大器尤其宏基站功率放大器的主流技术路线。

二、 碳化硅市场前景

自 1955 年菲力浦实验室的 Lely 首次在实验室成功制备碳化硅单晶以来,在随后的 60 余年中,美国、欧洲、日本等发达国家与地区的科研院所与企业不断创新和改良碳化硅单晶的制备技术与设备,在碳化硅单晶晶体及晶片技术与产业化领域形成了较大优势。

碳化硅功率器件在风力发电、工业电源、航空航天等领域已实现成熟应用。伴随新能源汽车、光伏发电、轨道交通、智能电网等产业的快速发展,功率器件的使用需求大幅增加。根据 IC Insights《2019 年光电子、传感器、分立器件市场分析与预测报告》, 2018 年全球功率器件的销售额增长率为 14%,达到 163 亿美元。未来,随着碳化硅和氮化镓功率器件的加速发展,全球功率器件的销售额预计将持续保持增长。预计 2018 至 2023 年期间,全球功率器件的销售额复合年增长率达到 3.3%,2023 年全球功率器件收入将达到 192 亿美元。

根据 IHSMarkit 数据,2018 年碳化硅功率器件市场规模约 3.9 亿美元,受新能源汽车庞大需求的驱动,以及电力设备等领域的带动,预计到 2027 年碳化硅功率器件的市场规模将超过 100 亿美元,碳化硅衬底的市场需求也将大幅增长。

一、行业典型应用

碳化硅MOSFET的主要应用领域包括:充电桩电源模块、光伏逆变器、光储一体机、新能源汽车空调、新能源汽车OBC、工业电源、电机驱动等。

1. 充电桩电源模块

与下游数量较多的充电桩制造商和运营商不同,目前充电模块行业玩家数量有限。历经过去几年的激烈竞争,行业逐渐出清。目前主流企业仅10家左右,包括特来电、盛弘股份、科华恒盛等为代表的自产自用型;以及英飞源、优优绿能、星源博睿、英可瑞等为代表的外供型两类。

随着新能源汽车800V平台的出现,主流充电模块也从之前主流的15、20kW向30、40kW发展,输出电压范围300Vdc-1000Vdc,并且具备双向充电功能,以达到V2G/V2H等技术要求。因此,越来越多充电模块企业开始采用SiC MOS方案。


微信图片_20240619124311.png

图 新能源充电桩中SiC的应用

2. 光伏逆变器

在全球可再生能源的大力发展以及“双碳”战略目标的推动下,全球光伏产业迅速扩张,光伏逆变器市场整体也呈现高速发展趋势。根据海关总署数据,从出货情况来看,2023逆变器累计出口99.54亿美元,同比+11%。

经过多年的市场竞争,当前我国光伏逆变器行业已经形成较为集中、整体竞争较为充分的格局。同时,国内知名逆变器品牌仍保持快速增长,出货量及全球市场占有率也在稳步提升。数据显示,2022年全球光伏逆变器供应商出货量市场排名前五的企业是:阳光电源、华为、古瑞瓦特、锦浪科技和SMA。而在研究机构BNEF公布的“全球最具融资价值光伏逆变器品牌”前十名榜单中,也有6家中国逆变器企业入围,其中,正泰电源、华为、阳光电源居于前三,锦浪、特变电工、固德威也位列其中。


图片27.png

图 光伏逆变器中SiC的应用

3. 光储一体机

光储一体机采用电力电子控制技术,通过智能控制实现能量转移,协调控制光伏与储能电池,平抑功率波动,并通过储能变流技术输出满足标准要求的交流电能向负载供电,满足用户侧多场景应用,广泛应用于离网光伏电站、分布式后备电源、储能电站等场合。国内光储一体机生产企业主要有:科陆电气、盛弘股份、兴储世纪、时代能创、精石电气、锦宇新能源、智源新能、采日能源、华自科技、邦照电气等。


图片28.png

图 光储一体机中SiC的应用

4.

新能源汽车空调

随着800V平台在新能源汽车上的兴起,在汽车空调压缩机控制器方案中,SiC MOS凭借其高压高效、贴片封装体积小等优势,成为市场首选。行业头部客户如弗迪科技、翰昂、华域三电、苏州中成、奥特佳、海立、威灵、上海光裕、重庆超力等。


图片29.png

图 新能源汽车空调中SiC的应用

5. 大功率OBC

三相OBC电路中SiC MOS应用更高的开关频率,可以减小磁性元器件体积和重量,提高效率和功率密度,同时高系统母线电压,大大减少功率器件数量,便于电路设计,提高可靠性。


图片30.png

图 大功率OBC中SiC的应用

6.

工业电源

工业电源主要应用于如医疗电源、激光电源、逆变焊机、大功率DC-DC电源、轨道牵引机等,需要高压、高频、高效率的应用场景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

近年来,使用“功率元器件”或“功率半导体”等说法,以大功率低损耗为目的二极管和晶体管等分立(分立半导体)元器件备受瞩目。这是因为,为了应对全球共通的 “节能化”和“小型化”课题,需要高效率高性能的功率元器件。

关键字: 碳化硅 SiC

SiC是在热、化学、机械方面都非常稳定的化合物半导体,对于功率元器件来说的重要参数都非常优异。作为元件,具有优于Si半导体的低阻值,可以高速工作,高温工作,能够大幅度削减从电力传输到实际设备的各种功率转换过程中的能量损耗...

关键字: SiC 功率元器

硅成为制造半导体产品的主要原材料,广泛应用于集成电路等低压、低频、低功率场景。但是,第一代半导体材料难以满足高功率及高频器件需求。

关键字: SiC 碳化硅 半导体

Jun. 20, 2024 ---- 据TrendForce集邦咨询研究显示,2023年全球SiC功率元件产业在纯电动汽车应用的驱动下保持强劲成长,前五大SiC功率元件供应商约占整体营收91.9%,其中ST以32.6%市...

关键字: SiC 电动汽车

作为第三代半导体产业发展的重要基础材料,碳化硅MOSFET具有更高的开关频率和使用温度,能够减小电感、电容、滤波器和变压器等组件的尺寸,提高系统电力转换效率,并且降低对热循环的散热要求。在电力电子系统中,应用碳化硅MOS...

关键字: SiC 第三代半导体 MOSFET

SiC功率元器件中浪涌抑制电路设计将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。

关键字: SiC 元器件 浪涌

小型封装内置第4代SiC MOSFET,实现业界超高功率密度,助力xEV逆变器实现小型化!

关键字: SiC 牵引逆变器 MOSFET

英飞凌位列2023全球半导体供应商第九,稳居全球功率和汽车半导体之首。2023年英飞凌汽车MCU销售额较上年增长近44%,约占全球市场的29%,首次拿下全球汽车MCU市场份额第1。

关键字: 英飞凌 功率半导体 汽车半导体 汽车微控制器 SiC GaN

电源滤波主要利用电容的隔直流、通交流的特性,干扰信号的频率越靠近电容的自谐振频率,干扰信号越容易被电容彻底过滤掉。

关键字: 大电容 滤低频 高频
关闭