当前位置:首页 > 测试测量 > 测试测量
[导读]选择一个合适的比较器必须精通比较器的应用场合、原理及类型。这篇文章就讲解了关于比较器的原理和应用。

选择一个合适的比较器必须精通比较器的应用场合、原理及类型。这篇文章就讲解了关于比较器的原理和应用。

什么是比较器?它和放大器有什么不同?

我们从工程学教程里了解到,运算放大器需要三个内部级才能发挥出最佳性能,比如实现高输入阻抗、低输出阻抗和高增益等。三个内部级分别是差分输入级、增益级(有或没有内部频率补偿)和输出级。这种基本的体系结构已经沿用了好几十年。早期,运算放大器曾作为数学运算的基本器件,主要以电压和电压信号来作标识。在反馈应用中,通过配置放大器周边的无源或有源器件,可以令系统执行加、减、乘、除和对数等运算。

比较器其实可看成一个能够作逻辑 “决策”的逻辑输出电路。换句话说,它可把输入信号与已定义的参考电平进行比较。比较器的逻辑输出功能可以帮助用户设计具有多样化的额外功能的模拟电路。而且,无论是高速ADC、SAR型ADC还是Sigma-Delta ADC,比较器都是组建集成ADC的内部基本而又关键的模块。

LM339的数据表中,列出了大量的应用。这基本上可以解释其在过去30年中为何被业界广泛地采用。以下列出LM339的一些常见应用:

·逻辑电平平移;

·过零检测/触发电路;

·电压信号/电源电压监察;

·Window比较器、施密特触发器;

·振荡器;

·时钟缓冲器;

·互导放大器。

比较器的基本体系结构和大部份的参数属性都与运算放大器类似。因此,运算放大器也可充当比较器。但放大器并不是专门针对比较功能而开发的,而且放大器的数据表一般都不保证这项功能可否正常实现。运算放大器与比较器的最大分别在于比较器是开环设计,没有反馈环节,而且输出会在任何一条电源轨的范围内显示差分输入信号的极性。

此外,比较器一般都会被设计成 “过压驱动”(overdriven),意思是它可经常处理较大的差分输入电压。相反,对于运算放大器而言,它通常被设计成在较小的信号和差分电压下运行,而这里的反馈概念通常都含有 “过驱” 意义,这样会导致开环配置中的输入出现饱和效应。如果将输入的极性倒转,则过驱时产生的输入级的饱和会导致信号的传播具有一定的延迟或相位滞后。

再者,对于较大的差分输入电压来说,运算放大器的输出很容易到达极限输出,从而启动保护功能。保护功能的启动将会导致输入阻抗的量级明显下降,迫使过量的电流涌到输入级,造成过载,甚至过热。如果在设计上没有保护的措施,那便可能导致整个器件损毁。因此,在器件的数据表,通常都会提供器件的最大输入电流的额定值,以帮助设计人员决定用多少附加输入电阻。

比较器和运算放大器之间最基本的区别就是他们具有不同的输出级结构。开漏或开集(以MOSFET为例)输出都有一个可用作输出但却不内部连接到V+的节点,而一个连接正电源电压的外部电阻器会在晶体管被关闭时将输出拉成 “高”。这个外部电压可以高于VCC,并且允许电平移位或可通过平行数个器件的两个或更多个输出来达到所谓的 “Wired-Or”2 功能 。假如内部的晶体管启动,一个细小的电流会从外部电源经过上拉电阻器流进器件输出,并令输出电压级转换成 “低” 和接近VCE (双极晶体管中的集极-发射极电压)。

比较器通常都不进行频率补偿功能,因此其工作速度相当高,同时开关时间也在某程度上取决于 “过驱”的程度。图1表示出当衡量一个输出状态变化时的差分输入电压。从图中可看出过驱需要高于失调电压才可以保证比较器有效地进行工作。一般来说,较大的过驱可加快开关时间。

比较器一般都以参数值和/或功能来分类,例如:

·通用比较器;

·高速比较器(传播延迟少于50毫微秒);

·低压比较器(电源电压VCC低于5V);

·微功率比较器(静态电流低于20微安);

·集成参考的比较器。

比较器的特性取决于其类别,分别为:

·传播延迟—由施加一个差分信号与切换状态的输出级之间的时间延迟 (例如是50%)。

·内部或外部滞后— 滞后是一种介乎低到高开关电压和高到低开关电压之间的设计预算中或需激活的差别。有些比较器具备可调节滞后水平的功能,方法是通过在指定的引脚上施加电压。

·上升及下降时间—一般是输出电压的10%至90%的时间,并且上升和下降缘的时间可以有差别,假如这情况出现,那将会导致输出的周期时间会相对于输入信号而改变。

·触发率—指在某一个频率下,比较器的输出可以跟随输入的状态来变化。

·消散—量度传播延迟变化的参数。

·抖动—可以是随机或事前决定,负责量度信号缘在时间上的不定性。

比较器是能够实现比较两个输入端的电流或电压的大小这一功能的电路或者装置。它有两个输入端Vi+和Vi-,一个输出端Vout。输入端接的是模拟信号,输出端输出是的数字信号,输出要么是高要么就是低,具体的高电平是任意由外接的电压幅值来决定的。


什么是比较器?它和放大器有什么不同?

选择其中输入端作为参考点(REF)来进行比较,例如选择同相输入端V2作为参考,当反相输入端V1大于V2时,Vout输出低电平;当V1小于V2时,Vout输出高电平。由此可知输出端的状态代表着两个输入之间的净差的符号,参考电压V2则称为比较器的阈值电压UT。由于比较器实际上是1位数模转换器(ADC),因而是ADC中的一个基本元件。

下面显示的是一个简单比较器的原理图和输出图。


什么是比较器?它和放大器有什么不同?

该电路构成了许多应用的基础,包括过零检测器、张弛振荡器、电平转换器、模数转换器、窗口检测器和施密特触发器等。

在上面的原理图中,运放 -ve 输入端的两个电阻相等,使得 Vref = Vcc/2。当 Vin 超过该点时,输出迅速变高。当 Vin 降至 Vref 以下时,输出再次变低。


什么是比较器?它和放大器有什么不同?

通过电阻器 R2 添加一些正反馈,将其变成施密特触发器,其迟滞由 R2/R1 控制。大多数555定时器应用都是基于使用它们自己的内部比较器。

1、反相比较器

反相比较器是基于运算放大器的比较器,其中参考电压施加到其非反相端子,输入电压施加到其反相端子。该比较器称为反相比较器,因为需要比较的输入电压施加到运算放大器的反相端子。

反相比较器的操作很简单。它根据其输入电压和参考电压的值在输出处产生两个值之一。反相比较器的电路图如下图所示。


什么是比较器?它和放大器有什么不同?

2、同相比较器

同相比较器是基于运算放大器的比较器,其中参考电压施加到其反相端子。另一方面,输入电压施加到其非反相端子。这种基于运算放大器的比较器称为非反相比较器,因为必须比较的输入电压施加到运算放大器的非反相端子。同相比较器的电路图如下图所示。


什么是比较器?它和放大器有什么不同?

比较器采用集成电路原理,它是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。


什么是比较器?它和放大器有什么不同?

图1(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。

若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。当R1=R2=0(相当于R1、R2路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。增益成为无穷大,其电路图就形成图1(b)的样子,差分放大器处于开环状态,它就是比较器电路。实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。

从图1中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。


什么是比较器?它和放大器有什么不同?

同相放大器电路如下图所示。如果图2中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。图2中的Vin相当于图3(b)中的VA。


什么是比较器?它和放大器有什么不同?

1、使用LM339的LDR比较器电路图

使用德州仪器 (TI) 的IC LM339设计的简单LDR比较器电路。这是一款四路比较器IC,该电路中仅使用了该IC 的4 位内部比较器之一。该电路采用5 伏稳压直流电源供电。

这里该电路的光敏元件是光检测电阻或LDR。这只是一个光敏元件,它会根据照射在其上的光线而改变其电阻。照射在其上的光线越多,其抵抗力越低。


什么是比较器?它和放大器有什么不同?

在上面的电路中,我们将引脚 4 连接到 LDR,电阻 R1 作为分压电路。这是反相端子,当光照射到 LDR 传感器时,通过该引脚的电阻率将降低,并且引脚 4 上的电压将升高,从而导致引脚 3 处输出低电平。

我们在引脚 5 处添加了可变电阻。由于可变电阻设置为低阻值,因此引脚 5 上的电压变高。反相端子引脚 4 需要低输入信号以保持低于引脚 4 上的电压以获得更高的输出,这意味着它被设置为低光强度。 LDR 上照射的光越多,其电阻就越低,输出端的电压就越高。每当反相输入端的电压超过或低于非反相输入端设置的阈值电压时,比较器输出就会改变状态。 LDR 在黑暗中时 LED 亮起。我们可以使用继电器或蜂鸣器代替LED来将该电路投入具体应用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭