当前位置:首页 > 电源 > 电源
[导读]单端反激式开关电源是一种电源电路,其工作原理主要基于磁芯的单端工作。当开关管导通时,高频变压器的一次绕组储存能量,而当开关管截止时,二次绕组则释放储存的能量。

单端反激式开关电源是一种电源电路,其工作原理主要基于磁芯的单端工作。当开关管导通时,高频变压器的一次绕组储存能量,而当开关管截止时,二次绕组则释放储存的能量。这个过程使得电能得以从一次绕组通过二次绕组和整流二极管传递到负载。

单端反激式开关电源具有低成本、低功耗、高效率以及适用于固定负载等优点。然而,其输出电压的纹波较大,且不适合处理大功率的电能。这种电源电路常用于如控制系统所需的辅助电源等场合。

单端反激式开关电源与单端正激式开关电源在形式上相似,但工作情形不同。当开关管导通时,整流二极管处于截止状态,变压器储存能量;当开关管截止时,变压器通过整流二极管向负载释放能量。与单端正激式开关电源相比,单端反激式开关电源的变压器结构更复杂且体积较大,实际应用较少。

单端反激式开关电源的工作原理主要基于磁芯的单端工作。当开关管导通时,高频变压器的一次绕组储存能量,而当开关管截止时,二次绕组则释放储存的能量。这个过程使得电能得以从一次绕组通过二次绕组和整流二极管传递到负载。

单端反激式开关电源具有低成本、低功耗、高效率以及适用于固定负载等优点。然而,其输出电压的纹波较大,且不适合处理大功率的电能。

考虑10W的功率以及小体积的因素,电路选用单端反激电路。单端反激电路的特点是:电路简单、体积小巧且成本低。单端反激电路由输入滤波电路、脉宽调制电路、功率传递电路(由开关管和变压器组成)、输出整流滤波电路、误差检测电路(由芯片TL431及周围元件组成)及信号传递电路(由隔离光耦及电阻组成)等组成。本电源设计成表面贴装的模块电源,其具体参数要求如下:

输出最大功率:10W

输入交流电压:85~265V

输出直流电压/电流:+5V,500mA;+12V,150mA;+24V,100mA

纹波电压:≤120mV

单端反激式开关电源的控制原理

所谓单端是指TOPSwitch-II系列器件只有一个脉冲调制信号功率输出端一漏极D。反激式则指当功率MOSFET导通时,就将电能储存在高频变压器的初级绕组上,仅当MOSFET关断时,才向次级输送电能,由于开关频率高达100kHz,使得高频变压器能够快速存储、释放能量,经高频整流滤波后即可获得直流连续输出。这也是反激式电路的基本工作原理。而反馈回路通过控制TOPSwitch器件控制端的电流来调节占空比,以达到稳压的目的。

TOPSwitch-Ⅱ系列芯片选型及介绍

TOPSwitch-Ⅱ系列芯片的漏极(D)与内部功率开关器件MOSFET相连,外部通过负载电感与主电源相连,在启动状态下通过内部开关式高压电源提供内部偏置电流,并设有电流检测。控制极(C)用于占空比控制的误差放大器和反馈电流的输入引脚,与内部并联稳压器连接,提供正常工作时的内部偏置电流,同时也是提供旁路、自动重起和补偿功能的电容连接点。源极(S)与高压功率回路的MOSFET的源极相连,兼做初级电路的公共点与参考点。内部输出极MOSFET的占空比随控制引脚电流的增加而线性下降,控制电压的典型值为5.7 V,极限电压为9 V,控制端最大允许电流为100 mA。

在设计时还对阈值电压采取了温度补偿措施,以消除因漏源导通电阻随温度变化而引起的漏极电流变化。当芯片结温大于135℃时,过热保护电路就输出高电平,关断输出极。此时控制电压Vc进入滞后调节模式,Vc端波形也变成幅度为4.7V~5.7V的锯齿波.若要重新启动电路,需断电后再接通电路开关,或者将Vc降至3.3V以下,再利用上电复位电路将内部触发器置零,使MOSFET恢复正常工作。

采用TOPSwitch-Ⅱ系列设计单片开关电源时所需外接元器件少,而且器件对电路板布局以及输入总线瞬变的敏感性大大减少,故设计十分方便,性能稳定,性价比更高。

对于芯片的选择主要考虑输入电压和功率。由设计要求可知,输入电压为宽范围输入,输出功率不大于10W,故选择TOP222G。

电路设计

本开关电源的原理图如图1所示。


单端反激式开关电源的控制原理

电源主电路为反激式,C1、L1、C2,接在交流电源进线端,用于滤除电网干扰,C5接在高压和地之间,用于滤除高频变压器初、次级后和电容产生的共模干扰,在国际标准中被称为"Y电容"。C1跟C5都称作安全电容,但C1专门滤除电网线之间的串模干扰,被称为"X电容"。

为承受可能从电网线窜入的电击,可在交流端并联一个标称电压u1mA为275V的压敏电阻VSR。

鉴于在功率MOSFET关断的瞬间,高频变压器的漏感产生尖峰电压UL,另外,在原边上会产生感应反向电动势UOR,二者叠加在直流输入电压上。典型的情况下,交流输入电压经整流桥整流后,其最高电压UImax=380V,UL≈165V,UOR=135V,贝UOR+UL+UOR≈680V。这就要求功率MOSFET至少能承受700V的高压,同时还必须在漏极增加钳位电路,用以吸收尖峰电压,保护TOP222G中的功率MOSFET。本电源的钳位电路由D2、D3组成。其中D2为瞬态电压抑制器(TVS)P6KE200,D3为超快恢复二极管UF4005。当MOSFET导通时,原边电压上端为正,下端为负,使得D3截止,钳位电路不起作用。在MOSFET截止瞬间,原边电压变为下端为正,上端为负,此时D1导通,电压被限制在200V左右。

输出环节设计

以+5V输出环节为例,次级线圈上的高频电压经过UF5401型100V/3A的超快恢复二极管D7,由于+5V输出功率相对较大,于是增加了后级LC滤波器,以减少输出纹波电压。滤波电感L2选用被称作"磁珠"的3.3μH穿心电感,可滤除D7在反向恢复过程中产生的开关噪声。

对于其他两路输出,只需在输出端分别加上滤波电容。其中R3、R4分别为输出的假负载,它们能降低各自输出端的空载和轻载电压。

反馈环节设计

反馈同路主要由PC817和TL431及若干电容、电阻构成。其中U2为TL431,它为可调试精密并联稳压器,利用电阻R5、R6分压获得基准电压值。通过调节R5、R6的值可以调节输出电压的稳压值。C8为TL431的频率补偿电容,可以提高TL43l的瞬态频率响应。C7为软启动电容,取C7=22μF时可增加4ms的软启动时间,在加上TOP222G本身已有的10ms软启动时间,则总共为14ms。

U3为PC817型线性光耦合器,其电流传输比(CTR)范围为80%~160%,,能够较好地满足反馈回路的设计要求,而目前国内常用的4N25、4N26属于非线性光耦合器,不宜采用。反馈绕组上产生的电压经D4、C9整流滤波,获得非隔离式+12V输出,为PC817接收管的集电极供电。由于反馈绕组输出电流较小,次级采用D4硅高速开关管1N4148。光耦PC817能将+5V输出与电网隔离,其发射极电流送至TOP222G的控制端,用来调节占空比。

C3为控制端旁路电容,它能对控制回路进行补偿并设定自动重启频率。当C3=47μF时,自动重启频率为1.2Hz,即每隔0.83s检测一次调节失控故障是否已经被排除,若确认已被排除,就自动重启开关电源恢复正常工作。

R2为PC817中LED的外部限流电阻。实际上除了限流保护作用外,他对控制回路的增益也具有重要影响。当R2改变时,会依次影响到下列参数值:IF→IC→D→UO,也就相当于改变了控制回路的电流放大倍数。

下面简要分析一下反馈回路实现稳压的工作原理。当输出电压UO发生波动且变化量为UO时,通过取样电阻R5、R6分压后,就使TL431的输出电压UK也产生相应的变化,进而使PC817中LED的工作电流IF改变,最后通过控制端电流IC的变化量来调节占空比D,使UO产生相反的变化,从而抵消UO的波动。上述稳压过程可归纳为:

UO ↑→UK ↓→IF ↑→IC ↑→D ↓→UO↓→最终使UO不变。

其余各路输出未加反馈,输出电压均由高频变压器的匝数来确定。

变压器设计

变压器的设计是整个电源设计的关键,它的好坏直接影响电源性能。

磁芯及骨架的确定

由于本文选用漆包线绕制,而且EE型磁芯的价格低廉,磁损耗低且适应性强,故选择EE22,其磁芯长度A=22mm。从厂家提供的磁芯产品手册中可查得磁芯有效横截面积SJ=0.41cm2,有效磁路长度1=3.96cm,磁芯等效电感AL=2.4μH/匝2,骨架宽度b=8.43mm。

确定最大占空比Dmax

根据公式:


单端反激式开关电源的控制原理

其中,UOR=135V,直流输入最小电压值UImin=90V,MOSFET的漏-源导通电压UDS(ON)=10V,代入上式得:Dmax=64.3%,接近典型值67%。Dmax随着输入电压的升高而减小。

计算初级线圈中的电流

输入电流的平均值IAVG为:


单端反激式开关电源的控制原理

初级峰值电流IP为:


单端反激式开关电源的控制原理

其中,KRP为初级纹波电流IR与初级峰值电流IP的比值,当电压为宽范围输入时,可取0.9。将Dmax=64.3%代入得,IP=0.518A。

确定初级绕组电感LP


单端反激式开关电源的控制原理

其中,损耗分配系数Z=0.5,IP=0.518A,KRP=0.4,PO=10W,代入得:LP≈1265μH。

确定绕组绕制方法

并计算各绕组的匝数

初级绕组的匝数NP可以通过下式计算:


单端反激式开关电源的控制原理

其中,磁芯截面积SJ=0.41cm2,磁芯最大磁通密度BM=60,IP=0.518A,LP≈1265μH,代入可得NP=26.6,实取30匝。

次级绕组采用堆叠式绕法,这也是变压器生产厂家经常采用的方法,其特点是由5V绕组给12V绕组提供部分匝数,而24V绕组中则包含了5V、12V的绕组和新增加的匝数。堆叠式绕法技术先进,不仅可以节省导线,减小线圈体积,还可以增加绕组之间的互感量,加强耦合程度。以本电源为例,当5V输出满载而12V和24V输出轻载时,由于5V绕组兼作12V、24V绕组的一部分,因此能减小这些绕组的漏感,可以避免因漏感使12V、24V输出电路中的滤波电容被尖峰电压充电到峰值,即产生所谓的峰值充电效应,从而引起输出电压不稳定。这里将5V绕组作为次级的始端。

对于多输出高频变压器,各输出绕组的匝数可以取相同的每伏匝数。每伏匝数nO可以由下式确定:


单端反激式开关电源的控制原理

其单位是匝/VO将NS取5匝,UO1=5V,UF1=0.4V(肖特基整流管导通压降)代入上式得到nO=0.925匝/V。

对于24V输出,已知UO2=24V,UF2=0.4V,则该路输出绕组匝数为NS2=0.925 匝/V×(24V十0.4V)=22.57匝,实取22匝。

对于12V输出,已知UO3=12V,UF2=0.4V,则该路输出绕组匝数为NS2=0.925匝/V ×(12V+0.4V)=11.47匝,实取11匝。

对于反馈绕组,已知UF=12V,UF3=0.7V(硅快速恢复整流二极管导通压降),则该路输出绕组匝数为NS2=0.925匝/V×(12V+0.4V)=11.47匝,实取11匝。

确定初/次级导线的内径

首先根据初级层数d、骨架宽度b和安全边距M,利用下式计算有效骨架宽度bE(单位是mm):

bE=d(b-2M) (7)

将d=2,b=8.43mm,M=0代入上式可得bE=16.86mm。

利用下式计算初级导线的外径(带绝缘层)DPM:

DPM=bE/NP (8)

将bE=16.86mm,NP=78匝代人得DPM=0.31mm,扣除漆皮厚度,裸导线内径DPM=0.26mm。与直径0.26mm接近的公制线规为0.28mm,比0.26mm略粗完全可以满足要求,而0.25mm的公制线规稍细,不宜选用。而次级绕组选用与初级相同的导线,根据电流的大小,采用多股并绕的方法绕制。

试验数据

该开关电源的输人特性数据见表1,在u=85~245V的宽范围内变化时,主路输出UO1=5V(负载为65Ω)的电压调整率SV=±0.2%,输出纹波电压最大值约为67mV;辅助输出UO2=24V(负载为250Ω),输出纹波电压最大值约为98mV;辅助输出UO3=12V(负载为100Q),输出纹波电压最大值约为84mV。


单端反激式开关电源的控制原理

FlyBack Converter又称单端反激式转换器,又称返返驰式(Flyback)转换器, 因其输出端在原边绕组断开电源时获得能量,因此得名。电子设备都是需要电源的,开关电源得到很广泛的应用。而对于中小功率的电源使用最广泛的拓扑结构就是:反激式结构。举些实际应用的例子,如笔记本电脑的适配器、手机充电器等。

优点:

1.电路简单,成本低,可靠性高,能提供多路直流输出;

2.当出入电压波动很大时,仍能稳定输出,可实现交流输入;

3.变压器匝数比值较小;

4.转换效率高,损耗小;

缺点:

1.输出电压纹波较大,负载调整精度不高,因此输出功率受到限制;

2.工作在CCM模式下,有较大的直流分量,容易导致变压器磁芯饱和,所以必须在此路中加入气隙,从而造成变压器;

3.Converter有直流分量,且同时会工作在CCM/DCM两种不同模式,导致Converter的设计和环路补偿的设计比较困难;

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭