如何计算开关损耗?各环节开关损耗如何计算?
扫描二维码
随时随地手机看文章
今天,小编将在这篇文章中为大家带来计算开关损耗的方法的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
一、开关损耗
开关管工作状态有两种:断开状态和导通状态。断开状态时, 流过开关的电流为0, 虽然开关两端电压不为0,但P =UI =0,所以不消耗功率。导通状态时, 开关上流过电流, 但开关两端电压为0, 同样P =UI =0。实际上开关器件开关时总有一个过渡状态,会导致开关损耗。而且开关损耗与开关频率成正比。
开关损耗包括导通损耗和截止损耗。导通损耗产生的原因:导通瞬间开关器件电压的不能马上降为0, 而电流从0已上升,因此在开关管上产生电压电流交替现象,而产生损耗电压不能马上降为0的原因是开关器件上有寄生电容,电容上电压不能突变,即不能马上降为0, 从而产生功率损耗。在导通过程中,寄生电容的储能通过开关器件放掉而损失。截止损耗产生的原因:截止瞬间开关器件电流不能马上降为0, 而电压已经从0上升, 在开关器件上产生电压电流交替现象。电流不能马上为0的原因是, 与开关器件连接的电路中有寄生电感, 阻碍电流变化。并且逆变电路中变压器是电感元件, 当开关突然关断时, 变压器电感元件电流不能突变,并会产生很大的反激电压, 阻碍电流变化, 通过电路加在开关管上, 产生比较大的损耗。提高开关速度不但不能消除损耗, 反而会使反激电压越大,损耗更大。
一般情况下, 截止损耗比导通损耗大很多。因为导通变截止时,功率管大电流突然降为0时,产生较大的反激电压,从而使开关管功率损耗比较大。减少开关损耗, 关键是减少截止损耗。
二、通过波形的线性近似分割来计算损耗的方法
通过在线性近似有效范围内对所测得的波形进行分割,可以计算出功率损耗。
1、导通和关断区间的开关损耗
首先,计算开通和关断时间内消耗的功率损耗Pton和Ptoff。波形使用图1中的示例波形。功率损耗使用表1中的近似公式来计算。由于计算公式会因波形的形状而有所不同,因此请选择接近测得波形的近似公式。
在图1的波形示例中,开通时的波形被分割为两部分,前半部分(ton1)使用表1中的例2。另外,使用公式ID1≔0作为条件。后半部分(ton2)使用例3中的公式VDS2≔0。
在图1中,会因MOSFET的导通电阻和ID而产生电压VDS2(on),但如果该电压远低于VDS的High电压,就可以视其为零。
图1. 开关损耗波形示例
综上所述,可以使用下面的公式(1)来近似计算开通时的功率损耗。
同样,将关断时的波形也分为两部分,前半部分(toff1)使用表1的例1中的公式VDS1≔0,后半部分使用(toff2)例8中的公式ID2≔0。在图1中,由于前述的原因,会产生电压VDS1(off),但如果该电压远低于VDS的High电压,则将其按“零”处理。这样,就可以使用下面的公式(2)来近似计算关断时的功率损耗。
表1. 各种波形形状的线性近似法开关损耗计算公式
2、导通期间的功率损耗
接下来,我们来计算导通期间消耗的功率损耗。图2是用来计算导通损耗的波形示例。由于在TON区间MOSFET是导通的,因此VDS是MOSFET导通电阻和ID的乘积。有关导通电阻的值,请参阅技术规格书。需要从表2中选择接近该波形形状的例子并使用其近似公式来计算功率损耗。
图2. 导通损耗波形示例
在本示例中,我们使用表2中的例1。MOSFET导通期间的导通损耗可以用下面的公式(3)来计算。
表2. 各种波形形状的线性近似法导通损耗计算公式
MOSFET关断时的功率损耗在图2中位于TOFF区间,由于MOSFET关断时的ID足够小,因此将功率损耗视为零。
3、总损耗
如公式(4)所示,MOSFET开关工作时的总功率损耗为此前计算出的开关损耗和导通损耗之和。
需要注意的是,表1和表2中的每个例子都有“参见附录”的注释,在附录中有每个例子的详细计算示例。各计算示例将会在后续的“各种波形的开关损耗计算示例”和“各种波形的导通损耗计算示例”中出现。
以上就是小编这次想要和大家分享的有关开关损耗计算方法的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。