当前位置:首页 > 物联网 > 智能应用
[导读]滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路

滤波电路" target="_blank">滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路

当流过电感的电流变化时,电感线圈中产生的感应电动势将阻止电流的变化。当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。只有在RL>>ωL时才能获得较好的滤波效果。L愈大,滤波效果愈好。另外,由于滤波电感电动势的作用,可以使二极管的导通角接近π,减小了二极管的冲击电流,平滑了流过二极管的电流,从而延长了整流二极管的寿命。

基础电路一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将无法正常工作。

1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。电源变压器由初级绕组、次级绕组和铁芯组成。初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。通俗的说,电源变压器是一种电→磁→电转换器件。即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。次级接上负载时,电路闭合,次级电路有交变电流通过。变压器的电路图符号见图2-3-1。

2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。

(1)半波整流电路

半波整流电路见图2-3-2。其中B1是电源变压器,D1是整流二极管,R1是负载。B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。在 2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。

设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:

整流二极管D1承受的反向峰值电压为:

由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。

(2)全波整流电路

由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。全波整流电路图见图2-3-6。相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。这个电路实质上是将两个半波整流电路组合到一起。在0~π期间B1次级上端为正下端为负,D1正向导通,电源电压加到R1上,R1两端的电压上端为正下端为负,其波形如图2-3-7(b)所示,其电流流向如图2-3-8所示;在π~2π期间B1次级上端为负下端为正,D2正向导通,电源电压加到R1上,R1两端的电压还是上端为正下端为负,其波形如图2-3-7(c)所示,其电流流向如图2-3-9所示。在2π~3π、3π~4π等后续周期中重复上述过程,这样电源正负两个半周的电压经过D1、D2整流后分别加到R1两端,R1上得到的电压总是上正下负,其波形如图2-3-7(d)所示。

设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:

整流二极管D1和D2承受的反向峰值电压为:

全波整流电路每个整流二极管上流过的电流只是负载电流的一半,比半波整流小一倍。

(3)桥式整流电路

由于全波整流电路需要特制的变压器,制作起来比较麻烦,于是出现了一种桥式整流电路。这种整流电路使用普通的变压器,但是比全波整流多用了两个整流二极管。由于四个整流二极管连接成电桥形式,所以称这种整流电路为桥式整流电路。

由图2-3-13可以看出在电源正半周时,B1次级上端为正,下端为负,整流二极管D4和D2导通,电流由变压器B1次级上端经过D4、R1、D2回到变压器B1次级下端;由图2-3-14可以看出在电源负半周时,B1次级下端为正,上端为负,整流二极管D1和D3导通,电流由变压器B1次级下端经过 D1、R1、D3回到变压器B1次级上端。R1两端的电压始终是上正下负,其波形与全波整流时一致。

设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:

整流二极管D1和D2承受的反向峰值电压为:

桥式整流电路每个整流二极管上流过的电流是负载电流的一半,与全波整流相同。

通常情况下桥式整流电路都简化成图2-3-17的形式。

(4)倍压整流电路

前面介绍的三种整流电路输出电压都小于输入交流电压的有效值,如果需要输出电压大于输入交流电压有效值时可以采用倍压电路,见图2-3-18。由图 2-3-19可知,在电源的正半周,变压器B1次级上端为正下端为负,D1导通,D2截止,C1通过D1充电,充电后C1两端电压接近B1次级电压峰值,方向为左端正右端负;由图2-3-20可知,在电源的负半周,变压器B1次级上端为负下端为正,D1截止,D2导通,C2通过D1充电,充电后C2两端电压接近C1两端电压与B1次级电压峰值之和,方向为下端正上端负。由于负载R1与C1并联,当R1足够大时,R1两端的电压即为接近2倍B1次级电压。

二倍压整流电路还有另外一种形式的画法,见图2-3-21,其原理与图2-3-18完全一致,只是表现形式不一样。


滤波电路常用的滤去整流输出电压中的纹波方案

图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。

电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。


滤波电路常用的滤去整流输出电压中的纹波方案

图2优点是匹配电阻少,只要求R1=R2。


滤波电路常用的滤去整流输出电压中的纹波方案

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3。


滤波电路常用的滤去整流输出电压中的纹波方案

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。


滤波电路常用的滤去整流输出电压中的纹波方案


滤波电路常用的滤去整流输出电压中的纹波方案

图5和图6要求R1=2R2=2R3,增益为1/2。

缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。

另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。


滤波电路常用的滤去整流输出电压中的纹波方案

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等。

例如增益取2,可以选R1=30K,R2=10K,R3=20K。


滤波电路常用的滤去整流输出电压中的纹波方案

图8的电阻匹配关系为R1=R2。


滤波电路常用的滤去整流输出电压中的纹波方案

图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。


滤波电路常用的滤去整流输出电压中的纹波方案

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。

使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。

图7、8、9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。

精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。

结论

虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多。确切地说只有3种,就是前面的3种。

图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联。可以通过R5调节增益,增益可以大于1,也可以小于1。最具有优势的是可以在R5上并电容滤波

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭