IGBT功率半导体器件主要参数
扫描二维码
随时随地手机看文章
一、IGBT概念
1.什么是IGBT
IGBT:IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
二、IGBT工作原理
IGBT 的工作原理是通过激活或停用其栅极端子来开启或关闭。
如果正输入电压通过栅极,发射极保持驱动电路开启。另一方面,如果 IGBT 的栅极端电压为零或略为负,则会关闭电路应用。
由于IGBT 既可用作 BJT 又可用作 MOS管,因此它实现的放大量是其输出信号和控制输入信号之间的比率。对于传统的 BJT,增益量与输出电流与输入电流的比率大致相同,我们将其称为 Beta 并表示为 β。另一方面,对于 MOS管,没有输入电流,因为栅极端子是主通道承载电流的隔离。我们通过将输出电流变化除以输入电压变化来确定 IGBT 的增益。
如下图所示,当集电极相对于发射极处于正电位时,N 沟道 IGBT 导通,而栅极相对于发射极也处于足够的正电位 (>V GET )。这种情况导致在栅极正下方形成反型层,从而形成沟道,并且电流开始从集电极流向发射极。IGBT 中的集电极电流Ic 由两个分量 Ie和 Ih 组成。Ie 是由于注入的电子通过注入层、漂移层和最终形成的沟道从集电极流向发射极的电流。Ih 是通过 Q1 和体电阻 Rb从集电极流向发射极的空穴电流。因此 尽管 Ih几乎可以忽略不计,因此 Ic ≈ Ie。在 IGBT 中观察到一种特殊现象,称为 IGBT 的闩锁。这发生在集电极电流超过某个阈值(ICE)。在这种情况下,寄生晶闸管被锁定,栅极端子失去对集电极电流的控制,即使栅极电位降低到 VGET以下,IGBT 也无法关闭。现在要关断 IGBT,我们需要典型的换流电路,例如晶闸管强制换流的情况。如果不尽快关闭设备,可能会损坏设备。
集电极电流公式下图很好地解释IGBT的工作原理,描述了 IGBT 的整个器件工作范围。
IGBT的工作原理图
IGBT 仅在栅极端子上有电压供应时工作,它是栅极电压,即VG。如上图所示,一旦存在栅极电压 ( VG ) ,栅极电流 ( IG ) 就会增加,然后它会增加栅极-发射极电压 ( VGE )。因此,栅极-发射极电压增加了集电极电流 ( IC )。因此,集电极电流 ( IC ) 降低了集电极到发射极电压 ( VCE )。
三、IGBT功率半导体器件主要测试参数
近年来IGBT成为电力电子领域中尤为瞩目的电力电子器件,并得到越来越广泛的应用,那么IGBT的测试就变的尤为重要了。IGBT的测试包括静态参数测试、动态参数测试、功率循环、HTRB可靠性测试等,这些测试中最基本的测试就是静态参数测试。
IGBT静态参数主要包含:栅极-发射极阈值电压VGE(th)、栅极-发射极漏电流IGEs、集电极-发射极截止电流ICEs、集电极-发射极饱和电压VCE(sat)、续流二极管压降VF、输入电容Ciss、输出电容Coss、反向传输电容Crss。只有保证IGBT的静态参数没有问题的情况下,才进行像动态参数(开关时间、开关损耗、续流二极管的反向恢复)、功率循环、HTRB可靠性方面进行测试。
四、IGBT功率半导体器件测试难点
IGBT是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体 器件,兼有高输入阻抗和低导通压降两方面的优点;同时IGBT芯片属于电力电子芯片,需要工作在大电流、 高电压、高频率的环境下,对芯片的可靠性要求较高。这给IGBT测试带来了一定的困难:
1、IGBT是多端口器件,需要多种仪表协同测试;
2、IGBT的漏电流越小越好,需要高精度的设备进行测试;
3、IGBT的电流输出能力很强,测试时需要快速注入1000A级电流,并完成压降的釆样;
4、IGBT耐压较高,一般从几千到一万伏不等,需要测量仪器具备高压输出和高压下nA级漏电流测试的能力;
5、由于IGBT工作在强电流下,自加热效应明显,严重时容易造成器件烧毁,需要提供μs级电流脉冲信号减少器件自加热效应;
6、输入输出电容对器件的开关性能影响很大,不同电压下器件等效结电容不同,C-V测试十分有必要。
五、测试总结
完成功率半导体器件的完整参数测试,包括IV,CV和Qg,支持在高低温条件下进行参数测试;
测试全自动化,B1506A将所有的接线切换通过开关矩阵实现,实现了测量的自动化,既能保证测试精度和重复性,同时极大的提升了测量速度;
可以建立Datasheet Characterization测试模板,测试结果可以输出测试数据、Datasheet报告和数据汇总等。
IGBT的静态特性主要有伏安特性、转移特性。
IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。
IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。
动态特性
动态特性又称开关特性,IGBT的开关特性分为两大部分:一是开关速度,主要指标是开关过程中各部分时间;另一个是开关过程中的损耗。
IGBT的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示::
Uds(on)=Uj1+Udr+IdRoh
式中Uj1——JI结的正向电压,其值为0.7~1V;Udr——扩展电阻Rdr上的压降;Roh——沟道电阻。
通态电流Ids可用下式表示:
Ids=(1+Bpnp)Imos
式中Imos——流过MOSFET的电流。
由于N+区存在电导调制效应,所以IGBT的通态压降小,耐压1000V的IGBT通态压降为2~3V。IGBT处于断态时,只有很小的泄漏电流存在。
IGBT在开通过程中,大部分时间是作为MOSFET来运行的,只是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱和,又增加了一段延迟时间。td(on)为开通延迟时间,tri为电流上升时间。实际应用中常给出的漏极电流开通时间ton即为td(on)tri之和,漏源电压的下降时间由tfe1和tfe2组成。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。因为IGBT栅极-发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
IGBT在关断过程中,漏极电流的波形变为两段。因为MOSFET关断后,PNP晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间,td(off)为关断延迟时间,trv为电压Uds(f)的上升时间。实际应用中常常给出的漏极电流的下降时间Tf由图中的t(f1)和t(f2)两段组成,而漏极电流的关断时间
t(off)=td(off)+trv十t(f)
式中:td(off)与trv之和又称为存储时间。
IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极和发射极并联电阻的增加而增加。IGBT的开启电压约3~4V,和MOSFET相当。IGBT导通时的饱和压降比MOSFET低而和GTR接近,饱和压降随栅极电压的增加而降低。