电源的传导是通过电流在物质中的迁移形成
扫描二维码
随时随地手机看文章
常见的传导分为热传导和电传导。是指热或电从物体的一部分传到另一部分。热从物体温度较高的部分沿着物体传到温度较低的部分,叫做热传导。传导是热传递的三种方式之一(传导、对流和辐射)。 热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热,但是不同物质的传热本领不同。
在物质不转移的情况下,热从高温区向较低温区的传递。热传导源自气体、液体和非金属固体中原子和分子之间相互碰撞产生的动能的转移。金属是良好的热导体和电导体,金属里的能量(energy)由穿过晶体点阵的自由电子和点阵的离子之间的碰撞传递。又称导热,是热量传递的3种基本方式之一。借物体中分子、原子或电子的相互碰撞,使热量从物体中温度较高部位传递到温度较低部位或传递到与之接触的温度较低的另一物体的过程,是固体中热量传递的主要方式。在液体或气体中往往与对流传热同时进行。一切物体不管其内部有无质点间的相对运动,只要存在温差就有热传导。工业上有许多是以热传导为主的传热过程,如橡胶制品的加热硫化、钢锻件的热处理等。在窑炉、传热设备和热绝缘的设计计算、高温高压设备(如氨合成塔中的废热锅炉等)的设计中都需用热传导规律。
电源的传导是通过电流在物质中的迁移形成的。
在物理学中,电传导是指电流通过物质的迁移过程。在金属等良好导体中,电传导主要源自自由电子在电场影响下朝一个方向的移动。而在液态导体中,电传导是由于正离子朝一个方向迁移而负离子朝反方向迁移。在气体中,电传导是由于正离子流向一个方向而电子流向另一个方向。半导体中的电传导则源自电子朝一个方向迁移而正空子朝另一方向迁移。
在电源适配器的具体应用中,传导发射的产生原因包括差模电流噪声和共模电流噪声。差模电流在两根输入电源线间反方向流动,形成电流回路;共模电流在两根输入电源线上同方向流动,与大地构成电流回路。这些电流噪声和干扰通过电源内部的高频干扰(一般150K到30M)进行传导,并通过特定的测量方式来接收和分析这些传导信号。
解决电源传导问题需要明确通过哪些途径减弱端口接收到的干扰,这涉及到电磁兼容性(EMC)的研究和实践。开关电源设计中,电磁干扰的机理包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)以及混合调制等方式,这些方式会影响电源的传导特性
问 题
电源的传导是怎么形成的?传导的途径有哪些?常用的手段?电源的辐射受哪些东西影响?怎么做大功率的EMC?
电源传导测量方式是通过接收输入端口L,N,PE来自电源内部的高频干扰(一般150K到30M)。
解决传导必须弄清楚通过哪些途径减弱端口接收到的干扰。
如图:一般有二种模式:L,N差模成分,以及通过PE地回路的共模成分。有些频率是差共模均有。
通过滤波的方式:一般采用二级共模搭配Y电容来滤去,选择的方式技巧也很重要,布板影响也很大。一般靠近端口放置低U电感,最好是镍锌材质,专门针对高频,绕线方式采用双线并绕,减少差模成分。后级一般放置感量较大,在4MH到10MH附近,只是经验值,具体需要与Y电容搭配。X电容滤差模也需要靠近端口,一般放在二级共模中间。放置Y电容,电容布板时走线需要加粗,不可外挂,否则效果很差。(这些只是输入滤波网络上做文章)
当然也可以从源头上下手,传导是辐射耦合到线路中的结果,减弱了开关辐射也能对传导带来好处。影响辐射的几处一般有MOS管开通速度,整流管导通关断,变压器,以及PFC电感等等。这些电路上的设计需要与其他方面折中不做详述。
一些经验技巧:针对大功率的EMC一般需要增加屏蔽,立竿见影,屏蔽的部位一般有几处选择:
第一:输入EMI电路与开关管间屏蔽,这对EMC有很大的作用,很多靠滤波器无效的采用该方法一般很有效果。
第二:变压器初次级屏蔽,一般设计变压器若有空间最好加上屏蔽。
第三:散热器的位置能很好充当屏蔽,合理布板利用,散热器接地选择也很重要。
第四:判断辐射源头位置,一般有几个简单的方法,不一定完全准确,可以参考,输入线套磁环若对EMC有好处,一般是原边MOS管,输出线套磁环若对EMC有效果,一般是副边输出整流管,尤其是大于100M的高频。可以考虑在输出加电容或者共模电感。
当然还有很多其他的细节技巧,尤其是布板环路方面的。