DC-DC转换器工作原理是什么?
扫描二维码
随时随地手机看文章
直流-直流转换器(DC-to-DC converter)也称为DC-DC转换器,是电能转换的电路或是机电设备,可以将直流(DC)电源转换为不同电压的直流(或近似直流)电源。其功率范围可以从很小(小的电池)到非常大(高压电源转换)。有些直流-直流转换器的输出电压和输入电压有相同的参考点,而有些直流-直流转换器的输出电压是和输入电压隔离。
DC-DC转换器工作原理是什么?
DC-DC转换器是一种电子设备,它可以将电源输入电压(VIN)变成不同的电压输出(VOUT),通常用于电路设计中,以实现电源管理和控制。这些转换器将直流电(DC)电压转换成不同的、可调整的电压,通常被应用于电子设备中,以满足各种不同的电源要求。DC-DC转换器类型有很多,如线性型、开关型、脉冲宽度调制型等等。
工作原理:
DC-DC转换器的工作原理分为两个基本部分:开关和滤波。其基本原理是,通过控制开关器的位置和频率,将电源输入电压(VIN)变成不同的电压输出(VOUT)。在DC-DC转换器中,
开关控制
器可以控制开和关的时间,从而调节输出电压的大小,并根据需要产生相应的电源输出。以下是开关型DC-DC转换器的工作原理:
1、输入电压滤波:在输入电压之前,我们将使用
滤波器
来减小干扰和波动。通常,被称为LC过滤器,其中包括电感和
电容
两个部分。在这里,输入电压通过电感,然后经过电容,以尽量减少噪音、涟波和各种干扰。
2、初始开关状态:刚开始,我们将设置开关的初始状态(ON/OFF)。这可以从
控制器
中得到。它取决于所需的输出电压和输入电压之间的差异,以及相应电路的安装方式。
3、导通状态:开关器在导通状态下,它的零阻抗导通,以允许电源中的
电流
流动到电感中。在这种情况下,输出电压将取决于电感的大小和输入电压的频率。
4、电感充电状态:当开关器进入关断状态时,电感存储介质的能量。通过放出电荷到
电容器
,利用中计算进行时间积分,我们可以计算出电感上的瞬时电压,并从中得到输出电压。
5、关断状态:在开关器进入关断状态时,电容释放电流到负载上,以提供所需的输出电压。同时,开关器转换到新的位置并开始下一次循环。
6、闭环控制:通常,我们会添加一个闭环控制器,以允许DC-DC转换器在变化的负载下维持稳定的输出电压。控制器将根据电路的要求定期测量输出电压,然后根据
检测
结果,判断开关器要进入导通状态还是关断状态。
总结来说,DC-DC转换器是一种非常有用的电子设备,它可以将电源输入电压(VIN)变成不同的电压输出(VOUT),应用广泛。其工作原理是基于开关和滤波理论,并使用闭环控制器来保证输出电压稳定,以适应不同的负载需求。
一、什么是DC-DC转换器及功能?
DC-DC转换器是一种将直流电压或者电流电平转换为另一种直流电压或电流电平的电子电路。大多数情况下,设备只使用一个电源。
如果不同的子电路需要不同的电压才能正常工作,才需要将输入电压转换为较低或者较高的电平,这个时候就可以通过DC-DC转换器来完成了。
DC-DC转换器除了转换电压,可以用来稳定电压,不会让电压下降或者上升太多。例如:汽车DC-DC转换器用途之一就是调节汽车交流发电机中的电压波动。
DC-DC转换器挨着电源
二、常见的DC-DC转换器
1、线性DC-DC转换器
线性转换器通过阻性负载降低输出电压,在这里输入和输出连接一个晶体管。输入电压被晶体管两端的电压降低,从而导致输出电压下降。
线性DC-DC转换器
线性DC-DC转换器是最简单的转换器类型,这里的电压通过放置在输入和输出之间的晶体管来降低。
线性DC-DC转换器的电路简单和便宜,但是也有许多缺点。只能用于降低电压,此外,效率会随着输入和输出电压之差的增加而下降。
另一方面,未使用的功率会以热量的形式耗散,如果输入和输出电压差异很大,很容易就会过热。
线性DC-DC用于需要高质量输出电压和低输出电压纹波的低功率设备和节点或者用于对电磁干扰敏感的设备。
线性转换器通常用于音频和视频电子、通信设备、医疗和测量设备。
2、开关DC-DC转换器
开关转换器使用开关元件、通过电脉冲为存储电容充电,然后,电压通过电容进行平滑处理并传输至负载,输出电压电平由开关元件的占空比定义。
开关DC-DC转换器
开关DC-DC转换器由电源开关、导体线圈、二极管和存储电容组成。元器件的数量及排列方式都会影响到转换器的工作。
输入电压以脉冲形式施加,但是电容对其进行了平滑处理。与线性转换器相比,开关转换器的效率要高,可以达到85-90%。
因为效率比较高,也不会产生太多的热量,可用于降低和增加输出电压,会产生更多的电磁噪声并需要更多的组件,也会更贵。
DC转换器应用实际案例:
下面为一个实际项目,需要为多个无线电发射器的设备中的多个子电路供电。
子电路需要5V,而输入电压为12V.最大电流达到2A。在这种情况下,使用线性转换器是不太实际的,因为一半以上的能量会以热量的形式耗散(全功率高达14W)。
安装冷却散热器也不是一个好的选择,因为外壳太小(10x10x1 厘米)。相反,使用TPS54335转换器。
DC转换器应用实例
当子电路所需的输入电压和输出电压之间的差异太大时,开关转换器可以避免产生过多的热量。
3、非隔离和隔离DC-DC 转换器
非隔离式DC-DC设计的特点是输入和输出电路致之间直接连接(也就是具有单一电路),与隔离模型相比,可以用于低功率设备。例如:通信、计算机、汽车及其他行业。
非隔离和隔离DC-DC 转换器
隔离式转换器,输入和输出相互分离,通常使用的式变压器,可以阻止2个电路之间的直流流动。
通常来说初级和次级是分开,广泛用于高压DC-DC转换器。此外,这个设计可以允许你断开接地环路,可以保护敏感电路免受噪声影响。
可以用于可编程逻辑控制器、工业自动化、IGBT驱动器的电源。
隔离式转换器电路实例
例如下面这个例子,因为设备工作在潮湿的环境中,因此必须使用隔离式转换器。在这里,使用了LM25017 fly-buck 稳压器
隔离式转换器电路实例
存在电击风险的系统使用LM25017 fly-buck 稳压器是理想的选择。
4、降压型DC-DC转换器
降压转换器,与输入相比,产生较低的输出电压。
在简单的降压转换器中,开关元件(K)快速打开和关闭电源。输出电压看起来像一系列方波。当开关打开时,线圈(L)和电容(C)会积蓄能量。
电容将这些波平滑成直流电压。当电压达到所需水平时,开关元件关闭,二极管(D)导通。自感电动势使电流留过二极管,线圈中积累的能量为负载充电。
下面是一个简单的降压转换器原理图。
降压转换器
降压转换器用于许多领域,包括电池充电器、多媒体播放器、游戏机、监视器和电视机。
5、升压型DC-DC转换器
升压DC-DC可以产生高于输入电压的电压。在典型的升压转换器中,感应线圈接收几乎所有电流,而闭合的二极管不让电流对电容和负载充电。
由于电流较高,与降压原理图相比,线圈可以积聚更多的磁场能量,当电压下降到某一点时,电源键关闭,同时二极管导通。
输入电压增加了存储在线圈中的能量,这样的话,升压DC-DC转换器的输出电压高于输入电压。
升压DC-DC转换器
如上图,升压DC-DC转换器与降压型转换器相同的组件,开关元件、导体线圈、二极管和电容,但排列方式不同。
升压转换器通常用于混合动力汽车、使用节能灯的照明系统,便携式照明设备。
6、buck-bosst DC-DC 转换器
buck-bosst DC-DC 转换器可以增加和减少输入电压以产生更高或者更低的输出电平。当需要处理宽输入电压范围时,通常就会用到。
在这种情况下,转换器使用2个导体和2个电容来升高和降低电压。
buck-bosst DC-DC 转换器
buck-bosst DC-DC 转换器通常用于锂离子电池供电的设备中。通常转换器将电压降低到所需水平。但是随着电池电压随着时间下降会开始升高。
7、反相DC-DC转换器
反相DC-DC转换器的主要功能是反转输出电压的极性。输出电平可以高于或者低于输入电平。当设备需要双电源(例如运算放大器)
反相DC-DC转换器