差动放大器由哪些部件组成?分立差动放大器增益分析!
扫描二维码
随时随地手机看文章
今天,小编将在这篇文章中为大家带来差动放大器的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
一、差动放大器组成
典型电路如图所示。
图中输入信号可看成由两部分组成,其中幅度和极性都相同的部分称为共模信号,记作uk(包括直流部分UIc和交流部分uic);幅度相同极性相反的部分称为差模信号,记作UId(包括直流部分UId和交流部分uid)。在电路左右侧元器件参数完全对称的情况下,对应于uIc的输出为零,而对应于UId的输出将为单管时的两倍,体现了有差别才动作的特点。实际上,元器件参数和外界的影响不能保证完全对称,共模输入也产生一定的输出。共模信号作用下的交流分量u0c和uic之比Auc,称为共模电压放大倍数;差模信号作用下的输出交流分量u0d与输入交流分量uid之比记作Aud,称为差模电压放大倍数;Aud与Auc的绝对值之比称为共模抑制比(KCME)。一个优质差动放大器的共模抑制比可达一百万倍(120dB)以上。
差动放大单元对共模信号有抑制作用,使温度变化、电源电压波动以及外界干扰这类共模信号输出很小,得到广泛应用。例如集成运算放大器的输入级以及示波器中垂直、水平放大器的输出级等。
二、分立差动放大器增益分析
经典的四电阻差动放大器如图1所示,但是这种电路的性能可能不像设计人员想要的那么好。下面从实际生产设计出发,讨论了与分立电阻相关的一些缺点,包括增益精度、增益漂移。
图1. 经典分立差动放大器
该放大器电路的传递函数为:
若R1 = R3且R2 = R4,则公式1简化为:
这种简化有助于快速估算预期信号,但这些电阻绝不会完全相等。此外,电阻通常有低精度和高温度系数的缺点,这会给电路带来重大误差。
例如,使用良好的运算放大器和标准的1%、100ppm/°C增益设置电阻,初始增益误差最高可达2%,温度漂移可达200ppm/°C。为解决这个问题,一种解决方案是使用单片电阻网络实现精密增益设置,但这种结构很庞大且昂贵。除了低精度和显著的温度漂移之外,大多数分立差动运算放大器电路的CMR也较差,并且输入电压范围小于电源电压。此外,单片仪表放大器会有增益漂移,因为前置放大器的内部电阻网络与接入RG引脚的外部增益设置电阻不匹配。
解决所有这些问题的最佳办法是使用带内部增益设置电阻的差动放大器,例如AD8271。通常,这些产品由高精度、低失真运算放大器和多个微调电阻组成。通过连接这些电阻可以创建各种各样的放大器电路,包括差动、同相和反相配置。芯片上的电阻可以并联连接以提供更广泛的选项。相比于分立设计,使用片内电阻可为设计人员带来多项优势。
图2. 增益误差与温度的关系——AD8271与分立解决方案比较
以上便是小编此次想要和大家共同分享的有关差动放大器的内容,如果你对本文内容感到满意,不妨持续关注我们网站哟。最后,十分感谢大家的阅读,have a nice day!