MOSTET开关时间受什么影响?MOSFET损耗分析!
扫描二维码
随时随地手机看文章
在下述的内容中,小编将会对MOSTET的相关消息予以报道,如果MOSTET是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
一、MOSTET开关时间受什么影响
MOSFET的开关时间受到许多因素的影响,其中最主要的因素是 MOSFET 的内部电容。MOSFET有三个内部电容:栅源电容(Cgs),栅极电容(Cgd)和漏极电容(Cds)。这些电容对MOSFET的开关时间和性能有着重要的影响。在MOSFET导通时,Cgs和Cgd电容会储存电荷,使得MOSFET的导通速度降低,因此会增加导通时间。同样,在关闭时Cgd和Cds电容会释放电荷,导致截止时间延迟。因此,减小MOSFET的内部电容可以显著地改进开关时间。除了内部电容之外,MOSFET 的工作温度也会对开关时间产生影响。当 MOSFET 的工作温度增加时,其导热性下降,内部电容则增加,从而增加了其开关时间。因此,在设计MOSFET的电路时,需要考虑工作温度对开关时间的影响,并且选择适当的散热解决方案以减少热效应。在电路中使用MOSFET作为开关,它的控制端可以通过修改开关时间来改变电压。以一系列开关时间为0-6微秒(us)的MOSFET为例,每次打开MOSFET需要花费3微秒,即导通时间为3微秒。当MOSFET被打开时,它可以导通,使得电路通过。当利用电路时MOSFET被关闭,截止时间为0.5微秒,则电路将停止通过。如果我们想要改变电路的输出电压,可以通过改变MOSFET的开关时间来实现。在导通时间和截止时间都保持不变的情况下,增加开关时间将导致电路输出电压的上升。反之,减少开关时间将导致电路输出电压的下降。
二、开关管MOSFET的损耗分析
MOSFET的损耗主要有以下部分组成:
1.通态损耗;2.导通损耗;3.关断损耗;4.驱动损耗;5.吸收损耗;
随着模块电源的体积减小,需 要将开关频率进一步提高,进而导致开通损耗和关断损耗的增加,例如300kHz的驱动频率下,开通损耗和关断损耗的比例已经是总损耗主要部分了。
MOSFET导通与关断过程中都会产生损耗,在这两个转换过程中,漏极电压与漏极电流、栅源电压与电荷之间的关系如图1和图2所示,现以导通转换过程为例进行分析:
t0-t1区间:栅极电压从0上升到门限电压Uth,开关管为导通,无漏极电流通过这一区间不产生损耗;
t1-t2区间:栅极电压达到Vth,漏极电流ID开始增加,到t2时刻达到最大值,但是漏源电压保持截止时高电平不变,从图1可以看出,此部分有VDS与ID有重叠,MOSFET功耗增大;
t2-t3区间:从t2时刻开始,漏源电压VDS开始下降,引起密勒电容效应,使得栅极电压不能上升而出现平台,t2-t3时刻电荷量等于Qgd,t3时刻开始漏极电压下降到最小值;此部分有VDS与ID有重叠,MOSFET功耗增大
t3-t4区间:栅极电压从平台上升至最后的驱动电压(模块电源一般设定为12V),上升的栅压使导通电阻进一步减少,MOSFET进入完全导通状态;此时损耗转化为导通损耗。
关断过程与导通过程相似,只不过是波形相反而已;关于MOSFET的导通损耗与关断损耗的分析过程,有很多文献可以参考,这里直接引用《张兴柱之MOSFET分析》的总结公式如下:
备注:为上升时间, 为开关频率, 为下降时间,为栅极电荷,为栅极驱动电压 为MOSFET体二极管损耗。
最后,小编诚心感谢大家的阅读。你们的每一次阅读,对小编来说都是莫大的鼓励和鼓舞。希望大家对MOSTET已经具备了初步的认识,最后的最后,祝大家有个精彩的一天。