一文读懂二极管的必备基础知识
扫描二维码
随时随地手机看文章
二极管作为最基础的晶体管,在电子电路应用中无所不在,博主在电路小课堂专栏里面的电路总结,不管是电平转换电路,电源自动切换电路,防反接电路,都有二极管的影子。
虽然二极管很基础,相对其他晶体管来说它是简单的,但是他的种类繁多,不同的类型应用场景也不相同,那么在我们平时电路设计上如何选择合适的二极管,以及了解不同种类的二极管的应用场景就很重要了。
01
正向导通压降
压降:二极管的电流流过负载以后相对于同一参考点的电势(电位)变化称为电压降,简称压降。导通压降:二极管开始导通时对应的电压。
正向特性:在二极管外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零。当正向电压大到足以克服PN结电场时,二极管正向导通,电流随电压增大而迅速上升。
反向特性:外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。反向电压增大到一定程度后,二极管反向击穿。
正向导通压降与导通电流的关系
在二极管两端加正向偏置电压时,其内部电场区域变窄,可以有较大的正向扩散电流通过PN结。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能真正导通。但二极管的导通压降是恒定不变的吗?它与正向扩散电流又存在什么样的关系?通过下图1的测试电路在常温下对型号为SM360A的二极管进行导通电流与导通压降的关系测试,可得到如图2所示的曲线关系:正向导通压降与导通电流成正比,其浮动压差为0.2V。从轻载导通电流到额定导通电流的压差虽仅为0.2V,但对于功率二极管来说它不仅影响效率也影响二极管的温升,所以在价格条件允许下,尽量选择导通压降小、额定工作电流较实际电流高一倍的二极管。
图1 二极管导通压降测试电路
图2 导通压降与导通电流关系
在我们开发产品的过程中,高低温环境对电子元器件的影响才是产品稳定工作的最大障碍。环境温度对绝大部分电子元器件的影响无疑是巨大的,二极管当然也不例外,在高低温环境下通过对SM360A的实测数据表1与图3的关系曲线可知道:二极管的导通压降与环境温度成反比。在环境温度为-45℃时虽导通压降最大,却不影响二极管的稳定性,但在环境温度为75℃时,外壳温度却已超过了数据手册给出的125℃,则该二极管在75℃时就必须降额使用。这也是为什么开关电源在某一个高温点需要降额使用的因素之一。
表 1 导通压降与导通电流测试数据
图3 导通压降与环境温度关系曲线
02
额定电流、最大正向电流IF
额定电流IF指二极管长期运行时,根据运行温升折算出来的平均电流值。目前最大功率整流二极管的IF值可达1000A。
是指二极管长期连续工作时,允许通过的最大正向平均电流值,其值与PN结面积及外部散热条件等有关。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为141左右,锗管为90左右)时,就会使管芯过热而损坏。所以在规定散热条件下,二极管使用中不要超过二极管最大整流电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。
03
最大平均整流电流Io
最大平均整流电流IO:在半波整流电路中,流过负载电阻的平均整流电流的最大值。折算设计时非常重要的值。
04
最大浪涌电流IFSM
运行流过的过量的正向电流。不是正常的电流,而是瞬间电流,这个值相当大。
05
最大反向峰值电压VRM
即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压VRM指为避免击穿所能加的最大反向电压。目前最高的VRM值可达几千伏。
06
最大反向电压VR
上述最大反向峰值电压是反复加上的峰值电压,VR是连续加直流电压的值。用于直流电流,最大直流反向电压对于确定允许值和上限值是很重要的。
07
最高工作频率fM
由于PN结的结电容存在,当工作频率超过某一值时,它的单向导电性将变差。点接触式二极管的fM值较高,在100MHz以上;整流二极管的fM较低,一般不高于几千Hz。
08
反向恢复时间Trr
当正向工作电压从正向电压变成反向电压时,二极管工作的理想情况是电流能瞬时截止。实际上,一般要延迟一点点时间。决定电流截止延时的量,就是反向恢复时间。
09
最大功率P
二极管中有电流流过,就会吸热,而使自身温度升高。最大功率P为功率的最大值。具体讲就是加载二极管两端的电压乘以流过的电流。这个极限参数对稳压二极管,可变电阻二极管显得特别重要。
10
反向饱和漏电流IR
指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料和温度有关。在常温下,硅管的IR为nA(10-9A)级,鍺管的IR为mA(10-6A)级。
11
降额(结温降额)
降额可以提高产品可靠性,延长使用寿命,根据温度降低10℃寿命增加一倍的理论,下面列出了不同额定结温的管子最小降额结温数据。
表1 二极管降额
12
什么是肖特基二极管?
肖特基二极管是一种利用肖特基势垒工艺的二极管,和普通的PN结二极管相比,其优点:更快的反向恢复时间,很多称之为0反向恢复时 间。虽然并不是真的0反向恢复时间,但是相对普通二极管要快非常多。其缺点:反向漏电流比较大,所以没法做成高压的二极管。目前的肖特基二极管,基本都是 200V以下的。虽然有些公司可以提供高压的肖特基硅二极管,但是也是将几个二极管串联之后封装在一起。当然也有公司称有独特的工艺,可以制造高压肖特基 二极管,但并不知晓是什么样的工艺。
13
可靠性设计
正确选用器件及器件周边的线路设计、机械设计和热设计等来控制器件在整机中的工作条件,防止各种不适当的应力或者操作给器件带来损伤,从而最大限度地发挥器件的固有可靠性。
14
容差设计
设计单板时,应放宽器件的参数允许变化的范围(包括制造容差、温度漂移、时间漂移),以保证器件的参数在一定范围内变化时,单板能正常工作。
15
在RCD钳位电路中,二极管到底选慢管,还是快管?
RCD电路常用于一些需要钳位的场合,比如flyback原边MOS的电压钳位,次级整流管的电压钳 位。有些技术文献说应该用慢恢复管,理由是慢恢复管由于其反向恢复时间比较长,这样钳位电容中的一部分能量会在二极管反向恢复过程中回馈给电路,这样整个 RCD电路的损耗可以降低。不过这个只适合小电流,低di/dt的场合。比如小功率flyback的原边钳位电路。但是不适合大电流,高di/dt的钳位 场合,比如大电流输出的电源的次级钳位电路。因为,慢恢复管在导通的时候会产生很高导通压降尖峰,导致虽然钳位电容上的电压很低,但是却没法钳住尖峰电 压。所以应该选择肖特基二极管之类。