当前位置:首页 > 公众号精选 > AI科技大本营
[导读]无论是在统治NLP届的Transformer,还是最近视觉领域的新秀Vision Transformer,我们都能在模型中看到Transpose/Permute算子的身影,特别是在多头注意力机制(Multi-Head Attention)中,需要该算子来改变数据维度排布。 显然,作为一个被高频使用的算子,其CUDA实现会影响到实际网络的训练速度。本文会介绍优化Permute Kernel的技巧,并跟PyTorch的Permute,原生的Copy操作进行实验对比。

无论是在统治NLP届的Transformer,还是最近视觉领域的新秀Vision Transformer,我们都能在模型中看到Transpose/Permute算子的身影,特别是在多头注意力机制(Multi-Head Attention)中,需要该算子来改变数据维度排布。

显然,作为一个被高频使用的算子,其CUDA实现会影响到实际网络的训练速度。本文会介绍优化Permute Kernel的技巧,并跟PyTorch的Permute,原生的Copy操作进行实验对比。
1朴素的Permute实现
Permute算子的作用是变换张量数据维度的顺序,举个例子:
x = flow.randn(2, 3)
y = x.permute(1, 0)
y.shape
(3, 2)

其实现原理也可以很容易理解,即输出Tensor的第i维,对应输入Tensor的dims[i]维,上述例子中 permute 实现对应的伪代码如下:
for row in x.shape[0]:
for col in x.shape[1]:
y[row][col] = x[col][row]

但是实际情况与上面的伪代码有出入,张量的Shape是数学上的概念,在物理设备上并不真实存在。

张量的数据都是保存在一块连续的内存中,下图分别从上层视角和底层视角描述了形状为(2, 3)的张量的存储方式:






Permute实现原理为:
  • 通过当前输出的一维偏移量(offset)计算对应的高维索引


  • 然后根据参数dims重新排列输出索引,进而得到输入索引。


  • 将输入索引转换成输入偏移量


  • 最后进行数据移动,整个过程的示意图如下:





完成Permute后,输出如下图所示:

整个 permute 计算过程需要经过多次一维偏移量offset和高维索引之间的转换,为了避免一次次手工计算,提供了一个工具类NdIndexOffsetHelper来方便做上述转换。

2NdIndexOffsetHelper

NdIndexOffsetHelper的主体方法如下:
  • NdIndexToOffset方法把高维索引转为一维偏移量


  • OffsetToNdIndex方法把一维偏移量转为高维索引



有了这么一个工具类,那我们就可以很轻松的写出一版Naive Permute Kernel了,核函数如下:template
__global__ void PermuteKernel(PermuteKernelParams params) {
using T = typename std::aligned_storage::type;
const T* src = reinterpret_cast(params.src);
T* dst = reinterpret_cast(params.dst);
IndexType src_index[num_dims];
IndexType dst_index[num_dims];
CUDA_1D_KERNEL_LOOP_T(IndexType, i, params.count) {
params.dst_index_helper.OffsetToNdIndex(i, dst_index);
#pragma unroll
for (size_t dim = 0; dim  (2, 3, 0, 1)
x = flow.randn(3, 4, 5, 6)
y = x.permute(2, 3, 0, 1)
y.shape
(5, 6, 3, 4)
显然这是一个四维的Permute情形,但这里第2,3维,第0,1维是一起Permute的,所以我们可以看成是一种二维的Permute情形:
# (0, 1, 2, 3) -> ((2, 3), (0, 1))
x = x.reshape(x.shape[0]*x.shape[1], x.shape[2]*x.shape[3])
y = x.permute(1, 0)
y = y.reshape(x.shape[2], x.shape[3], x.shape[0], x.shape[1])

合并维度后,在利用NdIndexOffsetHelper根据偏移量计算索引时,合并前需要计算成四维索引,而合并后我们只需计算成二维索引。相比合并前减少除法和乘法的次数,进而提升速度。

3. 使用更大的访问粒度

细心的朋友们可能观察到核函数中有一个模板参数size_t movement_size,它表示的是访问元素的粒度。
在Nvidia性能优化博客increase Performance with Vectorized Memory Access中提到可以通过向量化内存操作来提高CUDA Kernel性能,能够减少指令数,提高带宽利用率。链接:https://developer.nvidia.com/blog/cuda-pro-tip-increase-performance-with-vectorized-memory-access/)
我们设置访问粒度的规则如下:
  • CUDA支持的访问粒度为1B,2B,4B,8B,16B,粒度越大性能越好


  • 最后一个维度是作为整体来移动的,即permutation[n-1]==x.dims[n-1],且大小是新访问粒度的倍数


  • 保证数据指针满足新访问粒度的对齐要求



针对规则2,对应着以下Permute场景:(0, 1, 2, 3) -> (0, 2, 1, 3)其中最后一维并没有变化,仅仅是第1,2维进行交换,那么我们可以使用更大的访问粒度来读取数据,再进行Permute操作。代码中通过GetMovementSize函数来确定访问粒度的大小。
我们使用Nsight Compute对PyTorch的Permute和原生Copy操作对比测试运行时间和带宽,测试结果如下:




其中测试环境为NVIDIA A100 40GB,场景为(0, 1, 2)->(1, 0, 2),横坐标表示数据形状及数据类型。测试数据覆盖了16MB到128MB不同大小的数据,数据类型包含fp32和half两种类型。
从上面两张图可以看到,在大部分情况下都可以逼近甚至略高于Copy操作的带宽。与PyTorch对比,在操作耗时上最少快1.24倍,最快能达1.4倍。这里Permute的带宽比原生Copy还高一点,是因为Copy Kernel里没有做unroll指令间并行优化,而Permute Kernel内部做了相关优化,这里仅做参考。使用上面的两个优化技巧,就能轻易做到比PyTorch的实现要快了。常规的Permute适用情况比较广泛,也因此可能存在访存不合并的情况。在一些特殊的场景下,我们可以通过合并访存以提升带宽利用率和速度,这就引出我们下个关于BatchTranspose优化的话题。
4BatchTranspose优化
BatchTranspose操作即矩阵转置,仅交换矩阵最后的两维,以下情况均符合BatchTranspose的定义,其中括号内容表示维度的顺序:
(0, 1) -> (1, 0)
(0, 1, 2) -> (0, 2, 1)

在朴素的Permute方案中,对于最后一维作为整体移动的情况下,已经进行充分的优化。但实际场景中还存在矩阵转置的情况,此时无法应用第三条增大访问粒度的优化操作,并且不满足访存合并要求,导致性能不佳。以Pytorch为例,在数据大小为128MB情况下进行BatchTranspose时,因为未合并的访存导致实际读取数据量远大于写入数据量(7-8倍)。

在英伟达性能优化博客An Efficient Matrix Transpose in CUDA C/C (https://developer.nvidia.com/blog/efficient-matrix-transpose-cuda-cc/)中,其做法是设置一块Shared Memory,然后将一行数据读取到Shared Memory,再按列顺序将Shared Memory中的元素写回到Global Memory中。得益于Shared Memory访问粒度小的特性(Global Memory是32B,Shared Memory是4B),进而避免Global Memory的访存不连续的问题。
Shared Memory相比Global Memory有15倍更高的带宽,20-40倍更低的延迟,因此额外引入的读写开销可以忽略不计。
此外我们给Shared Memory多padding了一个元素,进而让以列顺序访问的元素能够均匀分布在32个bank上,避免bank conflict。对应的示意图如下(其中灰色部分代表Padding元素):


基于上述提到的点我们实现了一版BatchTranspose,代码如下:
template
__global__ void BatchTransposeKernel(const void* src_ptr, void* dst_ptr, IndexType H, IndexType W,
IndexType num_tile_rows, IndexType num_tile_cols,
int32_t block_nums)
{
using T = typename std::aligned_storage::type;
__shared__ T tile[tile_size][tile_size 1]; // To avoid bank conflict.

const T* src = reinterpret_cast(src_ptr);
T* dst = reinterpret_cast(dst_ptr);

IndexType batch_num_tile = num_tile_rows * num_tile_cols;
for (int i = blockIdx.x, step = gridDim.x; i 
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭