当前位置:首页 > 模拟 > 模拟技术
[导读]旁路电容的作用 旁路电容是指在电路中并联一个电容器,以提供一条低阻抗的通道,将高频信号绕过某个电路元件。旁路电容可以用来滤除噪声、提高信号的纯度,以及提高电路的性能。

旁路电容和去耦电容作用和区别

一、旁路电容的作用 旁路电容是指在电路中并联一个电容器,以提供一条低阻抗的通道,将高频信号绕过某个电路元件。旁路电容可以用来滤除噪声、提高信号的纯度,以及提高电路的性能。具体而言,旁路电容的作用有以下几个方面。

二、去耦电容的作用 去耦电容是指在电路中串联一个电容器,以提供一个低阻抗的通道,将直流信号绕过电源或信号源。去耦电容可以用来消除直流偏置,提供稳定的工作电压,从而改善电路的性能。具体而言,去耦电容的作用有以下几个方面。

三、旁路电容和去耦电容的区别 旁路电容和去耦电容在电路中的作用有一定的相似之处,但也存在一些不同之处。

总结起来,旁路电容主要用于高频滤波和信号纯度提升,去耦电容主要用于低频滤波和直流偏置消除。它们的作用和放置位置、频率范围、输入输出关系、效果目标等方面存在明显的差异。

在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。

对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象。

在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。


去耦电容和旁路电容的区别与联系

去耦电容和旁路电容的区别与联系

旁路电容是把输入信号中的干扰作为滤除对象,而去耦电容是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。去耦电容一般都很大,对更高频率的噪声,基本无效。旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等 ,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。

去耦电容(decoupling)也称退耦电容,是把输出信号的干扰作为滤除对象。去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声(c对高频阻力小,将之泻至GND)。

去耦电容和旁路电容的区别与联系

去耦电容的充、放电作用使集成电路得到的供电电压比较平稳,减小了电压振荡现象;集成电路可以就近在各自的去耦电容器上吸收或释放电流,不必通过电源线从较远的电源中取得电流,因此不会影响集成电路的速度;同时去耦电容器为集成电路的瞬态变化电流提供了各自就近的高频通道,从而大大减小了向外的辐射噪声并且相互之间没有公共阻抗,因此抑制了共阻抗耦合。

由于去耦电容器在高频时的阻抗将会减小到其自谐振频率,因而可以有效地除去信号线中的高频噪声,同时相对于低频来说,对能量没有影响,所以可在每一个集成电路的电源地脚之间加一个大小合适的去耦电容器。在选择去耦电容器类型时,应考虑哪些低电感的高频电容器。如高频性能好的多层陶瓷电容器或者独石电容器。

数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰电流,形成瞬变的噪声电压,会影响前级的正常工作。这就是耦合。对于噪声能力弱、关断时电流变化大的器件和ROM、RAM等存储型器件,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。

数字电路中典型的去耦电容值是0.1µF。这个电容的分布电感的典型值是5µH。 0.1µF的去耦电容有5µH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以 下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。 1µF、10µF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。 每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10µF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用 钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1µF,100MHz取0.01µ。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭