当前位置:首页 > 消费电子 > 消费电子
[导读] 工程实验室通常配备有网络分析仪,但很少配备用于转换器闭环分析的注入变压器。

电流作为电压变压器使用,可替代作为测试配件出售的注入变压器,赢得更高的成本效益。 工程实验室通常配备有网络分析仪,但很少配备用于转换器闭环分析的注入变压器。Agilent公司出售这种变压器,作为测试设备配件,但是价格昂贵。Ridley Engineering和Venable公司也出售注入变压器。这种注入具有出色的性能指标,但是价格也很昂贵。注意,它们的作用仅仅是变压器。作为另外一种替代方案,你也可以将电流变压器作为电压变压器使用,获得一个更具成本效益的注入变压器。 设计时,最难的参数是带宽。一方面,低频性能需要更大的磁芯和更多的匝数,这样会增大变压器的物理尺寸。另一方面,高频性能需要良好的耦合、小尺寸和最少的匝数。 幸好,电流适合大多数应用场合。

例如,Pulse Engineering公司的PE-51687在铁氧体磁芯上有一个100匝的初级绕组,没有次级绕组。 磁芯上有一个通孔,用户可以用标准导线自己绕制任意匝数的次级线圈。这条线同时也作为待测电路的一条连接线,并能根据次级线圈的匝数提供一定的驱动电平。 由于构建的是电压变压器,因此需要控制初级电压。

假使变压器的初级电抗比网络分析仪源电抗高,则给初级并联一个50电阻,就可正确地端接网络分析仪的信号源。低频情况下,初级感抗必须大于从变压器看过去的戴维南(Thevenin)等效阻抗(25)。PE-51687的初级电感为20mH,变压器可以工作的最低频率应满足: Xl=2*3.1416*Freq*Lprim。 对上式变形可以得到:Freq = 25/(6.28*20mH) = 200Hz 200Hz的低频截止频率适用于小信号,但是如果电压较大,超过了磁芯的伏秒积指标,则会导致磁芯饱和。PE-51687的初级伏秒积指标为600V*ms (600ms,1V)。因此,驱动电压也会限制低端频率响应。 高频响应受限于初级线圈中的电容。

DC变换器,也称为DC-DC转换器,是一种将直流电压转换为另一种直流电压的电力电子设备。在DC变换器的设计和应用中,控制方式是至关重要的,它决定了变换器的性能、效率和稳定性。以下将详细描述DC变换器的几种主要控制方式,包括开环控制、闭环控制、脉宽调制(PWM)控制、脉冲频率调制(PFM)控制以及PWM/PFM混合控制等。

开环控制是DC变换器中最简单的控制方式之一。在这种控制方式下,变换器的输出电压和电流不经过反馈回路进行调节,而是直接由控制器根据预设的参数来控制开关管的开关状态。开环控制的优点是结构简单、成本低廉,但由于没有反馈机制,它无法对外部扰动和负载变化进行实时响应,因此输出电压和电流的稳定性较差,波动较大。

闭环控制是相对于开环控制而言的,它引入了反馈回路来监测变换器的输出电压和电流,并根据监测结果调整开关管的开关状态,以实现更精确的控制。闭环控制可以消除外部扰动和负载变化对输出电压和电流的影响,提高系统的稳定性和可靠性。闭环控制通常包括电压闭环控制、电流闭环控制以及电压和电流双闭环控制等。

脉宽调制(PWM)是一种广泛应用于DC变换器中的调制方式。它通过控制开关管在一个周期内导通和截止的时间比例(即占空比)来调节输出电压和电流。PWM控制具有输出电压稳定、抗干扰能力强、效率高等优点。PWM控制可以分为固定频率PWM控制和可变频率PWM控制两种。

脉冲频率调制(PFM)是另一种DC变换器的调制方式。与PWM控制不同,PFM控制通过改变开关管的开关频率来调节输出电压和电流,而保持占空比不变。PFM控制具有在轻负载下功耗低、效率高的优点,但在重负载下可能无法保持输出电压的稳定性。因此,PFM控制通常适用于负载变化范围较大的应用场合。

为了充分利用PWM控制和PFM控制的优点,一些DC变换器采用了PWM/PFM混合控制方式。在这种控制方式下,变换器会根据负载情况自动切换工作模式:在轻负载下采用PFM控制以降低功耗;在重负载下切换到PWM控制以保持输出电压的稳定性。PWM/PFM混合控制可以提供更高的效率和更好的稳定性,但设计和实现相对复杂。

除了上述几种主要控制方式外,还有一些其他的控制方式也被应用于DC变换器中,如滑模控制、模糊控制、神经网络控制等。这些控制方式通常具有更高的控制精度和更好的动态响应性能,但设计和实现相对复杂,且需要较高的计算能力和算法支持。

1. 数字化控制

近年来,随着数字信号处理技术的发展,数字化控制逐渐成为DC变换器控制的主流趋势。数字化控制通过将模拟信号转换为数字信号,并利用微控制器(MCU)或数字信号处理器(DSP)等数字控制芯片实现控制算法,具有控制精度高、灵活性强、易于实现复杂控制策略等优点。数字化控制还可以实现远程监控和故障诊断,提高系统的智能化和可维护性。

2. 控制算法的优化

为了进一步提高DC变换器的性能,控制算法的优化也是关键之一。传统的控制算法如PID控制(比例-积分-微分控制)在DC变换器控制中得到了广泛应用,但其参数整定较为困难,且在某些复杂工况下可能无法达到最优控制效果。因此,研究人员提出了许多先进的控制算法,如模糊控制、神经网络控制、滑模控制等。这些算法能够更好地适应系统的非线性和不确定性,提高系统的鲁棒性和动态响应性能。

3. 软开关技术

软开关技术是一种用于减少DC变换器中开关损耗和提高效率的技术。在传统的硬开关技术中,开关管在导通和截止时会产生较大的电压和电流重叠,导致较高的开关损耗。而软开关技术通过引入谐振电路或辅助开关管等方式,使开关管在零电压或零电流条件下进行开关动作,从而减小开关损耗,提高变换器的效率。

4. 多电平技术

在高压大功率DC变换器的应用中,单电平结构可能面临开关管电压应力高、谐波含量大等问题。为了解决这些问题,多电平技术应运而生。多电平技术通过增加变换器的电平数来降低每个开关管承受的电压应力,并减小输出电压的谐波含量。常见的多电平拓扑包括二极管箝位型、飞跨电容型和级联型等。这些拓扑结构各有优缺点,需要根据具体的应用场景进行选择和优化。

5. 模块化与标准化

随着DC变换器应用领域的不断扩展和市场规模的增大,模块化与标准化成为DC变换器发展的重要方向。模块化设计可以将DC变换器划分为多个独立的模块单元,便于生产、安装和维护。同时,模块化设计还可以提高系统的灵活性和可扩展性,满足不同应用场景的需求。标准化则可以促进不同厂家和产品之间的互操作性和兼容性,降低系统集成成本和时间。

随着电力电子技术的不断发展和新能源产业的兴起,DC变换器作为电力电子系统中的关键设备之一,其性能和应用范围将不断拓展。未来DC变换器的发展趋势可能包括以下几个方面:

DC变换器的控制方式多种多样,每种方式都有其独特的优点和适用范围。在选择控制方式时,需要根据具体的应用场景和需求进行综合考虑。开环控制简单成本低但稳定性差;闭环控制可以提高系统的稳定性和可靠性;PWM控制具有输出电压稳定、抗干扰能力强等优点;PFM控制适用于轻负载下功耗低的场合;PWM/PFM混合控制则可以提供更高的效率和更好的稳定性。随着电力电子技术的不断发展,新的控制方式不断涌现,为DC变换器的设计和应用提供了更多可能性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭