当前位置:首页 > 模拟 > 模拟技术
[导读]施加在开关上的电压 斩波和平滑输入输出电流 绕组的利用率■选择最佳的拓扑结构需要研究: 输入和输出电压范围 电流范围 成本和性能、大小和重量之比

1、基本名词

常见的基本拓扑结构

■Buck降压

■Boost升压

■Buck-Boost降压-升压

■Flyback反激

■Forward正激

■Two-Transistor Forward双晶体管正激

■Push-Pull推挽

■Half Bridge半桥

■Full Bridge全桥

■SEPIC

■C’uk

基本的脉冲宽度调制波形

这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:


最全的最常见的基本拓扑结构详解


最全的最常见的基本拓扑结构详解

特点■把输入降至一个较低的电压。■可能是最简单的电路。■电感/电容滤波器滤平开关后的方波。■输出总是小于或等于输入。■输入电流不连续 (斩波)。■输出电流平滑

3、Boost升压


最全的最常见的基本拓扑结构详解

特点■把输入升至一个较高的电压。■与降压一样,但重新安排了电感、开关和二极管。■输出总是比大于或等于输入(忽略二极管的正向压降)。■输入电流平滑。■输出电流不连续 (斩波)。

4、Buck-Boost降压-升压


最全的最常见的基本拓扑结构详解

特点■电感、开关和二极管的另一种安排方法。■结合了降压和升压电路的缺点。■输入电流不连续 (斩波)。■输出电流也不连续 (斩波)。■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

5、Flyback反激


最全的最常见的基本拓扑结构详解

特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。■输出可以为正或为负,由线圈和二极管的极性决定。■输出电压可以大于或小于输入电压,由变压器的匝数比决定。■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。

6、Forward正激


最全的最常见的基本拓扑结构详解

特点■降压电路的变压器耦合形式。■不连续的输入电流,平滑的输出电流。■因为采用变压器,输出可以大于或小于输入,可以是任何极性。■增加次级绕组和电路可以获得多个输出。■在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组。■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

7、Two-Transistor Forward双晶体管正激


最全的最常见的基本拓扑结构详解

特点■两个开关同时工作。■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。■主要优点:■每个开关上的电压永远不会超过输入电压。■无需对绕组磁道复位。

8、Push-Pull推挽


最全的最常见的基本拓扑结构详解

特点■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。■良好的变压器磁芯利用率---在两个半周期中都传输功率。■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。■施加在FET上的电压是输入电压的两倍。

9、Half-Bridge半桥


最全的最常见的基本拓扑结构详解

特点■较高功率变换器极为常用的拓扑结构。■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。■良好的变压器磁芯利用率---在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。■施加在FET上的电压与输入电压相等。

10、Full-Bridge全桥


最全的最常见的基本拓扑结构详解

特点■较高功率变换器最为常用的拓扑结构。■开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。■良好的变压器磁芯利用率---在两个半周期中都传输功率。■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。■施加在 FETs上的电压与输入电压相等。■在给定的功率下,初级电流是半桥的一半。

11、SEPIC单端初级电感变换器


最全的最常见的基本拓扑结构详解

特点■输出电压可以大于或小于输入电压。■与升压电路一样,输入电流平滑,但是输出电流不连续。■能量通过电容从输入传输至输出。■需要两个电感。

12、C’uk(Slobodan C’uk的专利)


最全的最常见的基本拓扑结构详解

特点■输出反相■输出电压的幅度可以大于或小于输入。■输入电流和输出电流都是平滑的。■能量通过电容从输入传输至输出。■需要两个电感。■电感可以耦合获得零纹波电感电流。

13、电路工作的细节

下面讲解几种拓扑结构的工作细节■降压调整器:连续导电临界导电不连续导电■升压调整器 (连续导电)■变压器工作■反激变压器■正激变压器

14、Buck-降压调整器-连续导电


最全的最常见的基本拓扑结构详解

■电感电流连续。■Vout 是其输入电压 (V1)的均值。■输出电压为输入电压乘以开关的负荷比 (D)。■接通时,电感电流从电池流出。■开关断开时电流流过二极管。■忽略开关和电感中的损耗, D与负载电流无关。■降压调整器和其派生电路的特征是:输入电流不连续 (斩波), 输出电流连续 (平滑)。

15、Buck-降压调整器-临界导电


最全的最常见的基本拓扑结构详解

■电感电流仍然是连续的,只是当开关再次接通时 “达到”零。这被称为 “临界导电”。输出电压仍等于输入电压乘以D。

16、Buck-降压调整器-不连续导电


最全的最常见的基本拓扑结构详解

■在这种情况下,电感中的电流在每个周期的一段时间中为零。■输出电压仍然 (始终)是 v1的平均值。■输出电压不是输入电压乘以开关的负荷比 (D)。■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。

17、Boost升压调整器


最全的最常见的基本拓扑结构详解

■输出电压始终大于(或等于)输入电压。■输入电流连续,输出电流不连续(与降压调整器相反)。■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情况下:


最全的最常见的基本拓扑结构详解

在本例中,Vin = 5,Vout = 15, and D = 2/3.Vout = 15,D = 2/3.

18、变压器工作(包括初级电感的作用)


最全的最常见的基本拓扑结构详解

■变压器看作理想变压器,它的初级(磁化)电感与初级并联。

19、反激变压器


最全的最常见的基本拓扑结构详解

■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。

20、Forward 正激变换变压器


最全的最常见的基本拓扑结构详解

■初级电感很高,因为无需存储能量。■磁化电流 (i1) 流入 “磁化电感”,使磁芯在初级开关断开后去磁 (电压反向)。

21、总结

■此处回顾了目前开关式电源转换中最常见的电路拓扑结构。■还有许多拓扑结构,但大多是此处所述拓扑的组合或变形。■每种拓扑结构包含独特的设计权衡: 施加在开关上的电压 斩波和平滑输入输出电流 绕组的利用率■选择最佳的拓扑结构需要研究: 输入和输出电压范围 电流范围 成本和性能、大小和重量之比

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭