一台控制变压器的升压电路设计
扫描二维码
随时随地手机看文章
本节介绍两种控制变压器升压电路,即一台控制变压器升压电路和两台控制变压器升压电路。
一台控制变压器升压电路
我们在设计需要有些需要锂电池的产品中,由于锂电池正常工作电压范围在2.9V~4.2V之间,对于那些高于4.2V的电路,比如5V的电路,锂电池的供电电压就是不够的。这样我们就需要用到升压电路,来实现升压的功能。这里我们对锂电池的升压电路设计采用的是Boost升压电路结构。
Boost升压电路原理
我们知道大部分DC-DC电压转换芯片大都是采用Boost升压结构的形式,其主要由升压电感、二极管、和电容组成。
Boost升压电路是通过控制开关通断,来控制电感存储和释放能量,从而使输出电压比输入电压高。
在开关闭合时,电感通过图中回路1存储能量,此时二极管截止,后级电路由电容供电;
当开关断开时,电感通过图中回路2释放能量,此时二极管导通,电感给电容充电并为后级电路供电。
所以我们可以发现,在开关断开时,二极管两端存在压降,如果后级电路工作电流很大的话,那么这个二极管是在消耗很多的电能。所以在设计Boost电路时,对二极管的参数选型也很重要。
所以如果在输出电流很大的情况下,那么这个电路就变得不是那么的十分完美,因为这个二极管消耗了电能。在这个电路中我们发现这里的二极管也是起到开关的作用,于是我们就想到在二极管导通时,使用内阻极低的mos管来替代这个二极管,这样mos管上的压降就很小,耗电也就小。这种方法就是我们常说的同步整流。这里我们就很明显的知道了,同步整流电路的工作效率比传统二极管整流电路效率要高。对于锂电池这种本身电量有限的电源,使用同步整流升压给后级电路供电是最合适的方案,市场中有很多充电宝都是使用二极管整流,这种整流电路充电效率就没有同步整流的高了。
一台控制变压器升压电路如图13-16所示。
控制变压器升压电路的工作原理
图13-16 一台控制变压器升压电路
电路构成
该控制变压器升压电路由自耦变压器 T1和控制变压器T2等组成。
电路工作原理
图中将控制变压器反过来接线,即将控制变压器原来的输出端改为输入端,而将原来的输入端改为输出端,这样可以获得低电压输入、高电压输出。再与自耦变压器组合,可在较宽的范围内获得可调的输出电压。如0~24V输入/0~220V输出。由于一般试验电压要求高,因此这个变通可人为地控制试验电压,并且将试验电流控制在10mA以内(通常取1mA)。
两台控制变压器升压电路
在现场维修中,有时需要较高的试验电压输出设备,如果用标准成套设备,往往费用高,等待时间长而延误生产。这里介绍用两台控制变压器升压的方法,可以获得较高的电压,解决应急之需,组合方法如图13-17所示。
控制变压器升压电路的工作原理
图13-17 两台控制变压器升压电路
电路构成
两台控制变压器升压电路由一台自耦变压器T和两台控制变压器T1、T2共同组成。
电路工作原理
将两台控制变压器的低压输出端(12V)当作输入端使用,并且将T1、T2的12V(示例)绕组串联后,接到自耦调压器的可调输出端。将两台变压器原来的电源输入端(220V)串联后作为输出端使用。自耦变压器的输入端固定接到220V的工频电源上。通过现在的变通,就可以获得0~24V(12V+12V)/0~440V的试验电压了。
使用时,先将自耦变压器的可调电刷置于零位,然后接通自耦变压器的输入电源,用一块交流电压表监视0~24V的输出电压,再用一块交流电压表监视0~440V的变压器输出电压。当达到所需电压时,停止调节自耦变压器的电刷即可。
注意事项
输入电压表有电压指示时,输出电压表也应有同比例的电压上升。如果输入电压表有指示,而输出电压表的示值很小或者为零,则可单独检测变压器T1或T2的输出电压。如果T1或T2的输出电压正常,而两台变压器高压绕组串联后,输出电压反而小于单台变压器的输出电压,则表示输出电压绕组的连接是同极性连接,应将调压器调回零位,断开调压器工作电源,然后改变变压器高电压绕组接线,重复上述试验。
试验时,必须保证自耦变压器的初始输出值为0V,一边查看变压器的输入电压,一边查看变压器的输出电压。如果变压器的输入电压正常,而输出电压不正常,则应查明原因后再升压。必须保证供给变压器的电压不超过变压器的规定电压范围。变通时,要特别注意安全,保证设备和人身不受伤害。