当前位置:首页 > 电源 > 电源
[导读]设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。

针对开关电源很多人觉得很难,其实不然。设计一款开关电源并不难,难就难在做精,等你真正入门了,积累一定的经验,再采用分立的结构进行设计就简单多了。万事开头难,笔者在这就抛砖引玉,慢慢讲解如何一步一步设计开关电源。

开关电源设计的第一步就是看规格,具体的很多人都有接触过,也可以提出来供大家参考,我帮忙分析。

在这里只带大家设计一款宽范围输入的,12V2A的常规隔离开关电源。

1、首先确定功率

根据具体要求来选择相应的拓扑结构;这样的一个开关电源多选择反激式(flyback)基本上可以满足要求。在这里我会更多的选择是经验公式来计算,有需要分析的,可以拿出来再讨论。

2、选择相应的PWMIC和MOS来进行初步的电路原理图设计

当我们确定用flyback拓扑进行设计以后,我们需要选择相应的PWMIC和MOS来进行初步的电路原理图设计(sch)。无论是选择采用分立式的还是集成的都可以自己考虑。对里面的计算我还会进行分解。

分立式:PWMIC与MOS是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长(仅从设计角度来说);集成式:就是将PWMIC与MOS集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境。

3、做原理图

确定所选择的芯片以后,开始做原理图(sch),在这里我选用STVIPer53DIP(集成了MOS)进行设计。

设计前最好都先看一下相应的datasheet,确认一下简单的参数。无论是选用PI的集成,或384x或OBLD等分立的都需要参考一下datasheet。一般datasheet里都会附有简单的电路原理图,这些原理图是我们的设计依据。

4、确定相应的参数

当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCBLayout。当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进行计算了。


如何选择相应的PWMIC和MOS来进行初步的电路原理图设计

先附上相应的原理图。

5、确定开关频率,选择磁芯确定变压器

这里确定芯片工作频率为70KHz,芯片的频率可以通过外部的RC来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。与UC384X功能相近。

变压器磁芯为EER28/28L。

一般AC2DC的变换器,工作频率不宜设超过100kHz,主要是开关电源的频率过高以后,不利于系统的稳定性,更不利于EMC的通过性。频率太高,相应的di/dtdv/dt都会增加,除PI132kHz的工作频率之外,大家可以多参考其它家的芯片,就会总结自己的经验出来。

对于磁芯的选择,是在开关频率和功率的基础,更多的是经验选取。当然计算的话,你需要得到更多的磁芯参数,包括磁材,居里温度,频率特性等等,这个是需要慢慢建立的。

关于变压器磁芯的选择

功率大小:

小于5w可使用的磁芯:

ER9.5,ER11.5,EE8.3,EE10,EE13,RM4,GU11,EP7,EP10,UI9.8,URS7

5-10W可使用的磁芯:

ER20,EE19,RM5,GU14,EFD15,EI22,EPC13,EF16,EP13,UI11.5

10-20W可使用的磁芯:

ER25,EE20,EE25,RM6,GU18,EPC17,EF20

20-50W可使用的磁芯:

ER28,ETD28,EI28,EE28,EE30,EF25,RM8,GU22,PQ20,EPC19,EFD20

50-100W可使用的磁芯:

ER35,ETD34,EE35,EI35,EF30,RM10,GU30,PQ26,EPC25,EFD25

100-200W可使用的磁芯:

ER40,ER42,ETD39,EI40,RM12,GU36,PQ32,EFD30

200-500W可使用的磁芯:

ER49,ETD49,EC53,EE42,EE55,EI50,RM14,GU42,PQ35,PQ40,UU66

大于500W可使用的磁芯:

ER70,ETD59,EE65,EE85,GU59,PQ50,UU80,UU93

磁芯与传输功率对照表


如何选择相应的PWMIC和MOS来进行初步的电路原理图设计

6、设计变压器进行计算

输入input:85~265Vac

输出output:12V2A

开关频率Fsw:70kHz

磁芯core:EER28/28L

磁芯参数:Ae82mm2

以上均是已知参数,我们还需要设定一些参数,就可以进入下一步计算。

设定参数:

效率η=80%

最大占空比:Dmax=0.45

磁感应强度变化:ΔB=0.2

有了这些参数以后,我们就可以计算得到匝数和电感量。

输出功率Po=12V*2A=24W

输入功率Pin=Po/η=24W/0.8=30W

输入最低电压Vin(min)=Vac(min)*sqr(2)=85Vac*1.414=120Vdc

输入最高电压Vin(max)=Vac(max)*sqr(2)=265Vac*1.414=375Vdc

输入平均电流Iav=Pin/Vin(min)=30W/120Vdc=0.25A

输入峰值电流Ipeak=4*Iav=1A

原边电感量

Lp=Vin(min)*Dmax/(Ipeak*Fsw)=120Vdc*0.45/(1A*70K)=770uH

这里的4是一个经验值,当然也是我自己独家的经验。至于推导,不用那么麻烦,看下面的图,你就明白了,下面是DCM时的电流波形;至于CCM加一个平台,自己可以推导,很简单。


如何选择相应的PWMIC和MOS来进行初步的电路原理图设计

到此最重要的一步原边电感量已经求出,对于漏感及气隙,我不建议各位再去计算和验证。

漏感Lleakage<>

上面计算了变压器的电感量,现在我们还需要得到相应的匝数才可以完成整个变压器的工作。

1)计算导通时间Ton周期时间

T=Ton+Toff=1/FswTon=T*DmaxFsw,Dmax都是已知量70kHz,0.45代入上式可得Ton=6.43us

2)计算变压器初级匝数

Np=Vin(min)*Ton/(ΔB×Ae)=120Vdc*6.43us/(0.2*82mm2)=47T(这里的数是一定要取整的,而且是进位取整,我们变压器不可能只绕半圈或其它非整数圈)

3)计算变压器12V主输出的匝数输出电压(Vo):

12Vdc整流管压降(Vd):0.7

Vdc绕组压降(Vs):0.5

Vdc原边匝伏比(K)=Vi_min/Np=120Vdc/47T=2.55输出匝数(Ns)=(输出电压(Vo)+整流管压降(Vd)+绕组压降(Vs))/原边匝伏比(K)=(12Vdc+0.7Vdc+0.5Vdc)/2.55=6T(已取整)

4)计算变压器辅助绕组(auxturning)输出的匝数计算方法与12V主绕组输出一样因为STVIPer53DIP副边反馈需低于14.5Vdc,故选取12Vdc作为辅助电压;Na=6T到这一步,我们基本上就得出了变压器的主要参数原边绕组:47T原边电感量:0.77mH漏感<>

上面计算出匝数以后,可以直接确定漆包线的粗细,不需要去进行复杂的计算。

线径与常规电阻一样,都是有定值的,记住几种常用的定值线径。这里,原边电流比较小,可以直接选用φ0.25一股。辅助绕组φ0.25一股。主输出绕组φ0.4或0.5三股,不用选择更粗的,否则绕制起来,漆包线的硬度会使操作工人很难绕。

很多这一步'计算'过了以后,还会返回计算以验证变压器的窗口面积。个人认为返回验证是多余的,因为绕制不下的话,打样的变压器厂也会反馈给你,而你验证通过的,在实际中也不一定会通过;毕竟与实际绕制过程中的熟练度,及稀疏还是有很大关系的。

再下一步,需要确定输入输出的电容的大小,就可以进行布局和布板了。

7、输入输出电解电容计算

输入滤波电解电容

Cin=(1.5~3)*Pin

输出滤波电解电容

Cout=(200~300)*Io

上面我们计算出输入功率30W

所以Cin=45~90uF

从理论上来说,这个值选的越大,对后级就越好;从成本上考虑,我们不会无限制的去选取大容量。此处选值47uF/400Vdc85℃或105℃根据相应的应用环境来决定;电容不需要高频,普通低阻抗的就可以了。

输出电流是2A;

Cout=400~600uF

此处电容需要适应高频低阻的特性,这个值也可以选值变大,但前提必须是在反馈环内。因为是闭环精度控制,故取值470uF/16Vdc

这里电源就可以选两颗470uF/16Vdc,加一个L,阻成CLC低通滤波器。

基本上到这里,PCB上需要外形确定的器件已经完成,即PCB封装完成;下一步就可通过前面的原理图(SCH)定义好器件封装。

8、PCBLayout

上面已经确定变压器,原理图,以及电解电容,其它的基本上都是标准件了。

PCBlayout重点不是怎么连线,最重要的是如何布局;一般来说布局OK的话,画板就轻松多了。

在布局与布板方面:

1)RCD吸收部分与变压器形成的环面积尽量小;这样可以减小相应的辐射和传导。

2)地线尽量的短和宽大,保证相应的零电平有利于基准的稳定;同时VIPER53DIP这颗DIP-8的芯片散热的重要通道。

3)在di/dtdv/dt变化比较大的地方,尽量减小环路和加宽走线,降低不必要的电感特性。

附上相应的图,N久之前的版本,可以改进的地方很多,各位自行参考:目前这一块板仍一直在生产。


如何选择相应的PWMIC和MOS来进行初步的电路原理图设计


如何选择相应的PWMIC和MOS来进行初步的电路原理图设计

9、确定部分参数

我们前几步已经计算了变压器,PCBLayout完成以后,此时就可以确定变压器的同名端,完整的定义变压器,并发出去打样或自己绕制。

EER28/28L骨架是6+6

原边:1->3辅助:6->5输出:7,8,9->10,11,12

对于输出的脚位,我们可以用两个,或者全用上,看各位自己的选择。

从原理图及PCB图上,1,6,7,8,9为同名端,自己绕制时,起线需从这几个脚位起,同方向绕制。

变压器正式定义:

1->2:φ0.25x1x24T

7->10:φ0.50x2x6T

8->11:φ0.50x2x6T

9->12:φ0.50x2x6T

2->3:φ0.25x1x23T

6->5:φ0.25x1x6T

2,4并剪脚

L1-3:0.77mH0.25V@1kHz漏感低于5%磁材:PC40或等同材质

原边vs副边:3750Vac@1mA1min无击穿无飞弧

副边vs磁芯:1500Vac@1mA1min无击穿无飞弧

阻抗:

原边vs副边/绕组vs磁芯:500Vdc阻抗>100M

备注:这里采用三文治绕法,目的是为了降低漏感。

输出所有脚位全用上,目的是不浪费,同时降低输出绕组的内部阻抗。可以将PCB和变压器发出去打样了,剩下就是确定更多的参数并备料。

D101~D104:Iav=0.25A选1N4007(1000V@1A)当然选600V的也没有问题

snubbercircuit(RCD吸收):R101-100k1WC101-103@1kV(高压瓷片电容)

D105-FR107(选600V的超快恢复也可以):

这部分可以计算,也可以直接选用经典的参数,在调试时,再进行继续来检验。

D201:MBR10100

耐压:>Vo+Vin(max)*Ns/Np=12V+375Vdc*6/47=60V

D106:FR107(耐压计算同上,选FR101亦可,尽快将电源里器件整合,故选FR107)

R102:是一个分压电阻,主要用来限制Vdd的电压;0~100R范围内选,调试时,根据具体情况调整

R103,C105:这部分是STVIPER53DIP设定开关频率的,70kHz可查datasheet中的频率设定表,可知R103-10kC105-222

R103与C105组成一个RC网络,用于设定VIPer53的工作频率,它的工作频率可以高达300kHz,不过在AC-DC里我不建议使用那么高的频率。在VIPer53datasheet里有一个曲线,不过不是很方便,我将常用的频率设定表,整理一下,贴出来大家参考。


如何选择相应的PWMIC和MOS来进行初步的电路原理图设计

8脚TOVL是一个延时保护的,此处可以直接选104具体参数,根据应用时,来调整这个值。

1脚comp是一个补偿反馈脚,给出一组验证过的参数:R104-1k

C104-47uF/50V(电解电容)C103-104这是一个一阶惯性环节,在副边反馈状态下,以副边反馈的补偿网络为主,在失反馈此补偿网络才变为主网络。

IC102-选用PC817C就OK了,不需要要求太高的CTR值。

L201-10uH3A的工字电感,与E201E202形成一个低通滤波器,能更好地抑制纹波,可计算,在这里我不提倡来计算,可以根据调试中所碰到的问题再来调整。

IC201-TL431TO92封装,ref-2.5V

R205-1k这个值的计算>Vo-Vopdiode(光耦内发光二极管的压降)/Imin(光耦发光二极管最小击穿电流)

保证R205的选择能够在正常状态下,有效击穿光耦内部的发光二极管。

R204R202-18k4.7k根据公式2.5V/R202=Vo/(R202+R204)可计算。

C202-104这个也可以到时根据实际情况来调整,不需要去用公式进行复杂的计算。

CY103-这个是Y电容可以选222@400Vac,具体根据安规的耐压来选取,都可以在后续的工作中进行调整。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭