当前位置:首页 > 电路图 > 电机控制电路
[导读]大模型训练的背后是由高算力芯片所组成的大规模运算网络。Meta等巨头一出手就是几十万个高算力芯片,近千亿的投资来建设数据中心。

Sora也好,ChatGPT也好,大模型训练的背后是由高算力芯片所组成的大规模运算网络。Meta等巨头一出手就是几十万个高算力芯片,近千亿的投资来建设数据中心。而作为终端的AI产品,比如AI PC,AI手机,AI汽车,AI智能家居,依赖的就是终端产品内的算力芯片。


电源纹波和噪声测试解决方案

图1: 典型的8xGPU算力系统

晶体管是芯片的基础组成单元,晶体管的数量越多,芯片的性能越强。各大芯片设计厂家和晶圆厂,就是想方设法在有限的空间里,通过更小的工艺尺寸(如3nm),来堆积更多的晶体管。


电源纹波和噪声测试解决方案

图2:芯片的集成规模越来越高

晶体管工作的时候需要变化的电压,代表逻辑1和逻辑0,进而实现计算或控制。由于开关损耗、短路功耗和漏电功耗的存在,晶体管在工作的时候会消耗掉电源功率,产生热量。 晶体管数量越来越庞大之后,散热这个很现实的问题就摆在芯片和系统设计师的面前。处理器芯片每平方厘米的面积上,就能产生300瓦的峰值功率,算下是150瓦/平方厘米,已经超过了典型的核反应堆的功率密度了。 现在的数据中心很多都已经使用浸没式液冷来进行散热,把服务器和算力芯片浸没在绝缘的、导热性良好的液体里面,通过液体的流动快速带走热量,比传统的风扇散热效率更高,但这还远远不够。


电源纹波和噪声测试解决方案

图3:Chiplet封装示意图,存储单元可以多层堆叠而算力单元只能平铺

散热和工艺尺寸一样,是制约晶体管的密度和规模增加的难题之一。

解决散热的其中一个方案,就是从源头想办法,降低电压。使用更低的工作电压,将每一颗晶体管的功耗降下来,就可以堆叠更多的晶体管了。

早期的算力芯片工作电压是5V,慢慢演化到3.3V,1.8V,1.5V,到了今天,算力芯片和高速接口芯片的工作电压基本都在1V左右,甚至更低。这就对电源设计和测量提出了更高的要求。

低电压条件下电源纹波和噪声的测试挑战

电源是算力芯片的能量来源,是逻辑状态的参考基准。如果电源的纹波和噪声过大,会给高速变化的逻辑信号上产生大量抖动,进而产生误码(注: 误码即错误的码元, 将逻辑1当成逻辑0, 或者将0当成1),影响芯片的性能,甚至导致芯片无法正常工作。高速信号验证中非常重要的随机抖动和低频的周期性抖动,就是由于电源的噪声和纹波所引入的。


电源纹波和噪声测试解决方案

图4:电源纹波和噪声

电源的纹波和噪声测量,一直都是电源工程师们最关注的问题之一。算力芯片更低的工作电压,导致电源留给纹波和噪声的裕度变得更小了,给设计和测试都带来了难题。

设计上,算力芯片普遍采用POL的降压方式,将DC-DC变压器尽可能靠近负载端,可以有效避免传输链路上引入的外部干扰。

测试上,使用更高精度、更低底噪的示波器,和专用的电源纹波探头,降低测量系统引入的噪声,才能更准确地测量电源纹波和噪声。

电源纹波和噪声测试解决方案

泰克的MSO6B系列示波器的底噪性能十分优异,底噪的有效值在20MHZ带宽下低至8.68uV,1G带宽下低至51.5uV,是准确测量电源纹波和噪声的优选之一。

如果电源电压是1V,示波器的底噪稍微高一点,裕量还有很大空间,是可行的吗?这里需要了解两个问题:

仪器的底噪指标用的都是有效值。而电源纹波和噪声的测量规范,一般都是用峰峰值。峰峰值和测量样本数相关,测量的样本数越多,峰峰值越大,我们可以近似的认为峰峰值是有效值的10倍以上。

电源工程师测量底噪和纹波都会使用探头,而探头会引入额外的底噪。

为什么一定要用探头呢?有几个方面的原因,一是探头使用便捷,二是探头提供较高的输入阻抗,对待测电路的影响小,三是探头提供较大的偏置电压,可以在测量噪声和纹波的同时,观察到电源直流电压的变化。尤其当芯片的负载处于动态变化时,电源的直流电压也会随之改变。

示波器加上探头,再去测量一下底噪的峰峰值,你会发现原来底噪并不小。手上有示波器和探头的工程师不妨试试看,将示波器接上探头,不接任何待测信号。在示波器上打开峰峰值测量,测量结果就是系统底噪。

常规的示波器和探头,系统底噪峰峰值在5mV以上。而有些算力芯片和通信芯片,要求电源噪声的峰峰值必须小于3mV。测量系统的底噪都这么大,测量结果怎么可能Pass呢!

为了更准确的测量电源纹波和噪声,泰克推出了专用的电源轨探头TPR系列,20MHZ带宽下的底噪的峰峰值(注意是峰峰值)低至300uV,即便在4GHZ的全带宽下,底噪的峰峰值依然只有1.3mV!而且TPR探头还支持高达60V的偏置电压,多种多样的探头附件,不仅测得准,用起来还很方便。


电源纹波和噪声测试解决方案

图4: 泰克TPR电源轨探头的核心指标

实验室里真实的待测物,在MSO6B和TPR探头加持下,令人惊异的电源噪声测量结果

也许你手上的芯片或系统的电源设计得很不错,但是纹波和噪声测量结果却老是超标,有没有可能只是因为你现在用的示波器和探头不给力?

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭