如何简化电源隔离设计,轻松满足EMI目标?
扫描二维码
随时随地手机看文章
电子系统需要实施隔离,它的作用是保护人员和设备不受高电压的影响,或者仅仅是消除PCB上不需要的接地回路。在各种各样的应用中,包括工厂和工业自动化、医疗设备、通信和消费类产品,它都是一个基本设计元素。
在类似医疗或工业厂房的设备应用中,保护人员和设备不受高电压的影响至关重要:有线病人监护仪需要在除颤期间持续工作,相关的高压瞬变会造成沉重的负担;操控精密机械臂所使用的现代高速通信会受到弧焊和其他设备引起的电气噪声干扰,造成重大安全生产事故;等等。因此,为了满足安全法规以及降低噪声,设计人员需要为高压系统引入隔离。
近日, ADI接口与隔离产品中国区业务拓展专家陈捷先生做客ADI智库在线课程直播,从隔离技术的前景展望看集成电路发展到 EMI 挑战及目前主要解决方法延展至ADI新一代具有低辐射发射的isoPower的产品综述。
全面考虑产品设计的EMC挑战
众所知周,芯片级隔离电源的进步可以大大降低设计的复杂性,减少元路件数量,同时通过多个隔离电源实现空间受限应用。辐射发射一直是一个挑战,使用50MHz至200MHz的频率来减小变压器尺寸会带来辐射的增加:
共模电流:寄生电流通过变压器耦合到副边
无返回途径:这些电流不能穿过隔离栅,没有返回的物理途径,会形成偶极天线,进而产生辐射
环路面积:V ISOOUT 和GND 2 引脚连接到平面会增加环路面积和辐射
拼接电容:为减少偶极辐射,需要为高频共模电流提供一个低阻抗返回路径
隔离电源技术:工作原理
挑战:辐射发射增加
产品上市前,必须符合EMC规定。将变压器和所需的电路集成到更小的封装中会产生EMI,因此需要采用复杂且成本高昂的RE抑制技术,以满足电磁兼容性(EMC)法规的要求。据报道,50%的产品首次EMC测试都以失败告终。这可能是因为缺乏相关知识,且未能在产品设计阶段的早期应用EMC设计技术。想要最大限度地缩短设计时间和降低项目成本,在项目开始时就进行EMC设计是至关重要的。组件的选择和放置也很重要。将符合行业标准的器件纳入选择和设计可以提高合规性。
EMC抑制技术亟需更好的方法
与使用分立式变压器的传统方法相比,将变压器和电路集成到芯片级封装中可减少组件数量,进而大大节省PCB空间,但可能会引入更高的辐射发射。辐射发射抑制技术会使PCB的设计更加复杂,或需要额外组件,因此可能会抵消集成变压器所节省的成本和空间。例如,在PCB级别抑制辐射发射的一种常见方法是为CM电流形成一个从次级端至初级端的低阻抗路径,从而降低RE水平。要实现这一点,可以在初级端和次级端之间使用旁路电容。该旁路电容可以是分立式电容,也可以是嵌入式夹层电容。
分立式电容是最简单的解决方案,可能是有引线或表面安装组件。它还具有适用于2层PCB的优点,但分立式电容价格昂贵且体积庞大,会占用宝贵的PCB空间,特别是在可能堆叠了多个组件的隔离栅旁。
另一个不是很理想的解决方案是使用嵌入式旁路电容,当PCB中的两个面重合时就会形成该电容。此类电容具有一些非常有用的特性,原因在于平行板电容的电感极低,因此在更大的频率范围内都有效。它可以提高发射性能,但因为需要自定义层厚来获得正确的电容,且PCB需要四层或更多层,所以设计复杂性和成本都会增高。此外,还必须通过隔离的方式,确保内部重叠层的间距满足相关隔离标准所规定的最低距离标准。
无论是分立式还是嵌入式,使用旁路电容都不是理想的抑制技术。它虽然可以帮助减少辐射发射,却要以增加组件、采用复杂的PCB布局和提高瞬态敏感性为代价。理想的抑制技术不需要采用旁路电容,因此可以降低成本和PCB设计的复杂性。
ADI新一代isoPower系列产品
新一代isoPower系列产品采用创新的设计技术,可以避免产生大量辐射发射,甚至在没有旁路电容的2层板上也不例外。ADuM5020和ADuM5028在以大幅裕量满足CISPR22/EN55022B类限制的同时,可以分别跨隔离栅提供500mW和330mW功率。
ADuM5020采用16引脚宽体SOIC封装,而对于ADuM5028,可以选择的最小封装是8引脚SOIC。ADuM5020/ADuM5028提供3V和5V两种电源选项,以及3kV rms额定隔离。
为了减少辐射发射,ADuM5020/ADuM5028具有出色的线圈对称性和线圈驱动电路,有助于将通过隔离栅的CM电流传输最小化。扩频技术也被用来降低某一特定频率的噪声浓度,并将辐射发射能量扩散到更广泛的频段。在次级端使用低价铁氧体磁珠会进一步减少辐射发射。在RE合规测试期间,这些技术可以改善峰值和准峰值测量水平。