当前位置:首页 > 测试测量 > 测试测量
[导读]本文针对无法始终按计划工作的主要电子系统进行故障排除:开关模式、低压、DC-DC、单相、非隔离、基本降压转换器电路。

本文针对无法始终按计划工作的主要电子系统进行故障排除:开关模式低压、DC-DC、单相、非隔离、基本降压转换器电路。

转换器故障排除的一般规则

排除故障时,重要的是要考虑哪些变量在起作用并减少可能的故障原因的数量。

以下是一些可以帮助您的指南:

您需要可靠地使系统无法排除故障。一个问题自己消失了,它自己又回来了。

一次只改变一件事并注意效果。

如果电路停止工作,询问“发生了什么变化?”是否有与失败同时发生的事件?

查看故障是否随转换板、芯片或负载一起移动。

考虑到这些概念,以下是您在设计 DC-DC 降压转换器时可能会遇到的九个常见问题以及一些可能的原因。


c0f88462-0384-11ef-a297-92fbcf53809c.jpg

测量输出电压的 10× 探头。图片来源:埃里克·博加廷

问题#1:纹波太多

如果您看到太多纹波,则电感可能太低 - 较高的值会产生较低的纹波,但瞬态响应较慢。

另外,请记住,大电感纹波电流意味着更高的峰值电流和更大的电感饱和可能性,尤其是在高温下,并且对 FET 造成更大的压力。

其他问题可能是C out太低(没有足够的存储来支持输出)或C out ESR(等效串联电阻)太高(导致C out中的 IR 压降)。

最后,低开关频率会导致更多纹波。


c1060164-0384-11ef-a297-92fbcf53809c.jpg

使用 10× 探头测量噪声。Eric Bogatin 的“如何测量开关模式电源 (SMPS) 中的噪声”的屏幕截图

问题#2:无法启动

首先,问自己这个问题:“启用”引脚是否正确驱动(或上拉)?电源良好输出也是如此。

启动失败可能是因为您发现负载电容过大(例如 FPGA),就像短路一样,触发了电流限制。有些芯片具有消隐和软启动功能来解决这个问题。

将电流限制点设置得尽可能高以避免误报,并与 FPGA 工程师协商在系统级别优化电容。

最后,确保V输入不会下降,并且 UV 锁定不会由于输入下降而激活。

问题#3:关闭时输出端存在电压

如果您的电路确实关闭,但您在输出上看到电压,则该电压通常来自另一个电源电路。检查是否存在通往其他活动导轨的不明显路径。

问题#4:监管不力

通过远程V输出检测,电源路径欧姆压降可能会导致调节不良,这可能是由于分配到电路板上过多负载的电源轨(单个电源转换器输出线)造成的。这就是为什么有时避免使用多轨转换器 IC (“PMIC”),而是在负载旁边使用多个转换器。

如果您的电压检测引脚有噪音,请保持该引脚的布局整洁,并确保与检测信号相关的任何电阻器放置在控制器附近。

另一种解释是您的参考电压在滤波不足时可能不稳定。

问题#5:瞬态响应缓慢

这里的罪魁祸首是可能有太大的大容量输出电容或太大的电感器。

另一个问题可能是环路补偿不良。如果没有合适的设备,则很难完全表征环路特性。但即使您没有网络分析仪,您也可以使用阶跃负载并观察瞬态振铃,它会以低廉的成本告诉您很多信息。

此外,在开发过程中,如果设计负载发生变化,补偿通常也必须改变。例如,您是否以设计负载的一半使用工厂评估模块?你看到问题所在了。

问题#6:不稳定

C out ESR 可能是不稳定的一个原因,因为它在环路响应中引入了零,这使得增益曲线停止下降并开始横向移动,从而侵蚀或消除了增益裕度。如果零频率足够低,则在相位达到 180° 之前增益不会过零。

较便宜的转换器芯片可能会进行内部补偿以节省外部部件,但请确保您的C输出满足最小和最大C输出ESR 范围,在该范围内它们将保持稳定。

不稳定的其他解释可能包括电压感应不良或求和节点布局或噪声。

确保使用设计软件生成波特图并检查相位和增益裕度,包括温度范围。

问题#7:效率低下

自举电容器需要足够大,以便为高侧 FET 栅极提供电荷,否则,该 FET 可能无法完全导通,然后会消耗功率。与升压引脚串联的电阻器可用于调节开启以控制振铃。

测量电源电路效率(尤其是 90% 以上)并非易事,因为它需要电流测量,并且是两个功率量的比率。希望您已经通过电子表格工具描述了每个组件对损耗的贡献,该工具通常会告诉您 MOSFET 和电感器电阻(“DCR”或直流电阻)是造成热量浪费的主要因素。


c119aa20-0384-11ef-a297-92fbcf53809c.jpg

显示降压开关稳压器的效率与频率的关系图。该图取自 Linear Tech/Analog Devices的 LT8610 数据表。

问题#8:低温问题

请记住,低温下电解电容的 ESR 会上升,电容也会下降。

问题 #9:PMBus 问题

在共享数据通信总线上,确保当您不注意时另一个节点不会间歇性地喋喋不休。

另外,请确保您使用的上拉电阻足够强:47kΩ 上拉电阻(如在 FPGA 中)远不如 10kΩ。

结论

如果您完全不知道该怎么做,请获取更多数据,这将为您提供分析、创造想法和促进团队讨论的东西。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭