当前位置:首页 > EDA > 电子设计自动化
[导读]DC-DC 开关转换器的作用是将一个直流电压有效转换成另一个。高效率DC-DC转换器采用三项基本技术:降压、升压,以及降压/升压。

DC-DC 开关转换器的作用是将一个直流电压有效转换成另一个。高效率DC-DC转换器采用三项基本技术:降压、升压,以及降压/升压。降压转换器用于产生低直流输出电压,升压转换器用于产生高直流输出电压,降压/升压转换器则用于产生小于、大于或等于输入电压的输出电压。本文将重点介绍如何成功应用降压/升压DC-DC转换器。

采用单个单元的锂离子电池供电的典型低功耗系统。电池的可用输出范围为放电时的约3.0 V到充满电时的4.2 V。系统IC需要1.8 V、3.3 V、和3.6 V的电压,以实现最佳工作状态。锂离子电池开始工作时的电压为4.2 V,结束工作时的电压为3.0 V,在此过程中,降压/升压调节器可以提供3.3 V的恒定电压,而降压调节器或低压差调节器(LDO)则可在电池放电时提供1.8 V的电压。理论上,当电池电压高于3.5 V时,可使用降压调节器或LDO产生3.3 V电压,但当电池电压降至3.5 V以下时,系统就会停止工作。允许系统过早关闭会减少电池需要重新充电前的系统工作时间。

当 VIN小于VOUT,时,开关B断开,开关A闭合。开关C和D的工作方式和在升压调节器中一样,如图4所示。最困难的工作模式是当VIN 处在VOUT ± 10%, 范围内时,此时调节器会进入降压/升压 模式。在降压/升压模式下,两种操作(降压和升压)会在一个开关周期内发生。应特别注意降低损耗、优化效率,以及消除由于模式切换造成的不稳定性。这么做的目标是保持电压稳定,使电感中的电流纹波降至最低,保证良好的瞬态性能。

对于高负载电流,降压/升压调节器采用电流模式、固定频率、脉冲宽度调制 (PWM)控制,以获得出色的稳定性和瞬态响应。为确保便携式应用的电池寿命最长,还采用了省电模式,在轻载时可降低开关频率。对于无线应用和其它低噪声应用,可变频率省电模式可能会引起干扰,通过增加逻辑控制输入,可强制转换器在所有负载条件下均以固定频率PWM方式工作。

降压/升压调节器提高系统效率

如今的很多便携式系统都采用单单元锂离子充电电池供电。如上所述,电池会从满充状态时的4.2 V开始工作,缓慢放电至3.0 V。当电池输出降至3.0 V以下时,系统就会关闭,防止电池因过度放电而受损。采用低压差调节器产生3.3 V电压轨时,系统会在

VIN MIN = VOUT + VDROUPOUT = 3.3 V + 0.2 V = 3.5 V

时关断,此时只用了电池所存储电能的70% 。但如果采用降压/升压调节器(如ADP2503或ADP2504),系统就可以持续工作到最小实际电池电压。ADP2503和ADP2504 (参见 附录) 均为高效率、600 mA和1000 mA低静态电流、降压/升压DC-DC转换器,工作时的输入电压可高于、低于或等于稳压输出电压。电源开关采用内置形式,最大限度地减少了外部元件的数量和印刷电路板(PCB)的面积。通过 这种方法,系统可以一直工作到3.0 V,从而充分利用电池存储的电能,增加了电池需要重新充电前的系统工作时间。

为了节省便携式系统的电能,各种子系统(如微处理器、显示屏背光和功率放大器)不用时会在全开 和 休眠模式之间频繁切换,造成电池电源线路上较大的电压瞬变。这些瞬变会使电池输出电压短时降至3.0 V以下,并触发低电量警告,从而使系统在电池完全放电前关闭。降压/升压解决方案可以承受的电压摆幅低至2.3 V,有助于维持系统潜在的工作时间。

降压/升压调节器主要规格特性与定义

输出电压范围选项: 降压/升压调节器提供额定的固定输出电压,或者提供选项,允许通过外部电阻分压器对输出电压进行编程设置。

地电流或静态电流: 未输送给负载的直流偏置电流 (Iq) 器件的 Iq低,则效率越高,然而, Iq 可以针对许多条件进行规定,包括关断、负载、脉冲频率(PFM)工作模式或脉冲宽度(PWM)工作模式。因此,为了确定某个应用的最佳升压调节器,最好查看特定工作电压和负载电流下的实际工作效率。

关断电流: 这是使能引脚禁用时器件消耗的输入电流。低Iq对于电池供电器件在休眠模式下能否长时间待机很重要。在逻辑控制的关断期间,输入与输出断开,从输入源汲取的电流小于1 μA。

软启动:具有软启动功能很重要,输出电压以可控方式缓升,从而避免启动时出现输出电压过冲现象。

开关频率:低功耗降压/升压转换器的工作频率范围一般是500 kHz到3 MHz。开关频率较高时,所用的电感可以更小,还可减少PCB面积,但开关频率每增加一倍,效率就会降低大约2%。

热关断(TSD): 当结温超过规定的限值时,热关断电路就会关闭调节器。一直较高的结温可能由工作电流高、电路板冷却不佳和/或环境温度高等原因引起。保护电路包括迟滞,因此,发生热关断后,器件会在片内温度降至预设限值以下后才返回正常工作状态。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭