N型MOS管的工作原理是什么?为什么PMOS的闪烁噪声低于NMOS
扫描二维码
随时随地手机看文章
以下内容中,小编将对NMOS的相关内容进行着重介绍和阐述,希望本文能帮您增进对NMOS的了解,和小编一起来看看吧。
一、N型MOS管的工作原理
NMOS全称为N型金属-氧化物-半导体。 其结构如下:在一块掺杂浓度较低的P型硅衬底(提供大量可以动空穴)上,制作两个高掺杂浓度的N+区(N+区域中有大量为电流流动提供自由电子的电子源),并用金属铝引出两个电极,分别作漏极D和源极S。 然后在半导体表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏——源极间的绝缘层上再装上一个铝电极(通常是多晶硅),作为栅极G。 在衬底上也引出一个电极B,这就构成了一个N沟道增强型MOS管。 MOS管的源极和衬底通常是接在一起的(大多数管子在出厂前已连接好,也可以不连接,作为模拟开关使用)。
通过以上结构,我们发现,
NMOS管在默认状态下,由于漏极和源极(N型)之间隔着P型半导体,会形成由P指向N的2圈PN结,阻止自由电子的流动,我们称为NMOS管是截止状态。
在栅极相对S极(或者B极)增加正向电压后,此时N型半导体的源极和漏极的电子,由于电场作用,想流向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图b),使得P型半导体中产生了一部分N沟道,使源极和漏极之间导通了。 我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。
所以以上过程又可以描述为:在G极相对S极(或B极)增加电压后,会使得原本隔离开的两个N型半导体之间形成一段N型沟道,大量的自由电子聚集在N型半导体区域后,通过在D极和S极增加电压,就可以使得原本不导通的MOS管导通。 所以我们称MOS管器件为电压控制型放大器件。
我们定义MOS管沟道刚刚形成时的GS极(或者GB)电压为开启电压Vgsth。 Vgs越大,沟道越厚,D极与S极导电能力越强。
为了表征放大特征,常使用GS与电流的关系式表达MOS管的放大能力。
其中,Vgsth为MOS管的开启电压,IDSS为Vgs=2Vgsth时,IDS电流值。
如上即为NMOS管的工作原理。
二、为什么PMOS的闪烁噪声低于NMOS
首先,闪烁噪声是指当MOSFET在静态或动态偏置下运行时由热噪声产生的频谱噪声。它的特征是随机性和高度非线性的频谱特性,同时它也是电子模拟和数字电路设计中的一种主要性能参数。根据理论和实验结果,可以发现,PMOS的闪烁噪声相对较低是因为它的电子运动方式与NMOS不同。在NMOS中,电子是被控制栅电压吸引并向漏电极移动,而在PMOS中,空穴是被控制栅电压反向成为驱动力来吸引向源极移动。由于NFET和PFET具有不同的电荷分布,所以他们的噪声行为也有所不同。
此外,PMOS中的电荷移动速度常常较慢,这意味着在其执行操作时其噪声信号本身就较小。PMOS的表演虽然缓慢,但仍以其优秀的抑噪性能著称,虽然它没有NMOS快,但是可以提供优异的线性特性,因而可以在一些应用如读出电路中占有重要的位置。这就是为什么PMOS的闪烁噪声通常低于NMOS的原因。总的来说,正如一项报告指出的那样,PMOS锥形缓冲层结构是“在模拟电路中既实现了高品质”的的决定性因素,提示该技术正在被广泛用于数字电路和模拟电路中。尽管PMOS的闪烁噪声比NMOS低,但在实际应用中,需要根据特定的应用场景选择NMOS或PMOS来满足系统要求。对于越来越多的模拟电路,PMOS成为更优的选择是非常明显的。
最后,我们可以看到,了解PMOS和NMOS之间存在的噪声差异是理解集成电路设计的重要组成部分,可以为我们适当选择电子元件提供更多信息和指导。
经由小编的介绍,不知道你对NMOS是否充满了兴趣?如果你想对它有更多的了解,不妨尝试在我们的网站里进行搜索哦。