当前位置:首页 > 电源 > 电源
[导读]在开关电源中,如果MOS管的关断和导通速度不够快,也会产生附加的功率损耗‌。

内阻很小的MOS管发热的主要原因包括以下几点‌:

‌功率损耗‌:当MOS管流过较大电流时,即使内阻很小,也会产生较大的功率损耗,导致发热。在开关电源中,如果MOS管的关断和导通速度不够快,也会产生附加的功率损耗‌12。

‌线性工作状态‌:如果MOS管工作在线性区而非开关区,导通时间过长会导致工作在线性区内,等效直流阻抗增大,压降增大,从而增加功率损耗和发热‌23。

‌开关频率过高‌:在追求小型化的过程中,提高工作频率会导致MOS管上的损耗增大,发热问题显著‌23。

‌散热设计不足‌:如果散热设计不足,即使电流没有超过标称值,也可能因散热不良而导致严重发热‌2。

‌选型不当‌:选择MOS管时,内阻选择不当也会导致开关阻抗增大,功率损耗增加,从而引起发热‌23。

‌外部因素‌:外部短路或断路、过流保护动作后未切断电路、负载过大、环境温度过高等因素也会导致MOS管发热‌4。

Source、Drain、Gate分别对应场效应管的三极:源极S、漏极D、栅极G(里这不讲栅极GOX击穿,只针对漏极电压击穿)。

1、MOSFET的击穿有哪几种?

先讲测试条件,都是源栅衬底都是接地,然后扫描漏极电压,直至Drain端电流达到1uA。所以从器件结构上看,它的漏电通道有三条:Drain到source、Drain到Bulk、Drain到Gate。

1、 Drain-》Source穿通击穿

这个主要是Drain加反偏电压后,使得Drain/Bulk的PN结耗尽区延展,当耗尽区碰到Source的时候,那源漏之间就不需要开启就形成了 通路,所以叫做穿通(punch through)。

那如何防止穿通呢?这就要回到二极管反偏特性了,耗尽区宽度除了与电压有关,还与两边的掺杂浓度有关,浓度越高可以抑制耗尽区宽度延展,所以flow里面有个防穿通注入(APT:AnTI Punch Through),记住它要打和well同type的specis。

当然实际遇到WAT的BV跑了而且确定是从Source端走了,可能还要看是否 PolyCD或者Spacer宽度,或者LDD_IMP问题了。

那如何排除呢?这就要看你是否NMOS和PMOS都跑了?POLY CD可以通过Poly相关的WAT来验证。

对于穿通击穿,有以下一些特征:

(1)穿通击穿的击穿点软,击穿过程中,电流有逐步增大的特征,这是因为耗尽层扩展较宽,产生电流较大。

另一方面,耗尽层展宽大容易发生DIBL效应,使源衬底结正偏出现电流逐步增大的特征。

(2)穿通击穿的软击穿点发生在源漏的耗尽层相接时,此时源端的载流子注入到耗尽层中,被耗尽层中的电场加速达到漏端。

因此,穿通击穿的电流也有急剧增大点,这个电流的急剧增大和雪崩击穿时电流急剧增大不同,这时的电流相当于源衬底PN结正向导通时的电流,而雪崩击穿时的电流主要为PN结反向击穿时的雪崩电流,如不作限流,雪崩击穿的电流要大。

(3)穿通击穿一般不会出现破坏性击穿。因为穿通击穿场强没有达到雪崩击穿的场强,不会产生大量电子空穴对。

(4)穿通击穿一般发生在沟道体内,沟道表面不容易发生穿通,这主要是由于沟道注入使表面浓度比浓度大造成,所以,对NMOS管一般都有防穿通注入。

(5)一般的,鸟嘴边缘的浓度比沟道中间浓度大,所以穿通击穿一般发生在沟道中间。

(6)多晶栅长度对穿通击穿是有影响的,随着栅长度增加,击穿增大。而对雪崩击穿,严格来说也有影响,但是没有那么显著。

2、 Drain-》Bulk雪崩击穿

这就单纯是PN结雪崩击穿了(avalanche Breakdown),主要是漏极反偏电压下使得PN结耗尽区展宽,则反偏电场加在了PN结反偏上面,使得电子加速撞击晶格产生新的电子空穴对 (Electron-Hole pair),然后电子继续撞击,如此雪崩倍增下去导致击穿,所以这种击穿的电流几乎快速增大,I-V curve几乎垂直上去,很容烧毁的。(这点和源漏穿通击穿不一样)

那如何改善这个juncTIon BV呢?所以主要还是从PN结本身特性讲起,肯定要降低耗尽区电场,防止碰撞产生电子空穴对,降低电压肯定不行,那就只能增加耗尽区宽度了,所以要改变 doping profile了,这就是为什么突变结(Abrupt juncTIon)的击穿电压比缓变结(Graded JuncTIon)的低。

当然除了doping profile,还有就是doping浓度,浓度越大,耗尽区宽度越窄,所以电场强度越强,那肯定就降低击穿电压了。而且还有个规律是击穿电压通常是由低 浓度的那边浓度影响更大,因为那边的耗尽区宽度大。

公式是BV=K*(1/Na+1/Nb),从公式里也可以看出Na和Nb浓度如果差10倍,几乎其中一 个就可以忽略了。

那实际的process如果发现BV变小,并且确认是从junction走的,那好好查查你的Source/Drain implant了。

3、 Drain-》Gate击穿

这个主要是Drain和Gate之间的Overlap导致的栅极氧化层击穿,这个有点类似GOX击穿了,当然它更像 Poly finger的GOX击穿了,所以他可能更care poly profile以及sidewall damage了。当然这个Overlap还有个问题就是GIDL,这个也会贡献Leakage使得BV降低。

上面讲的就是MOSFET的击穿的三个通道,通常BV的case以前两种居多。

上面讲的都是Off-state下的击穿,也就是Gate为0V的时候,但是有的时候Gate开启下Drain加电压过高也会导致击穿的,我们称之为 On-state击穿。

这种情况尤其喜欢发生在Gate较低电压时,或者管子刚刚开启时,而且几乎都是NMOS。所以我们通常WAT也会测试BVON。

上面讲的就是MOSFET的击穿的三个通道,通常BV的case以前两种居多。

上面讲的都是Off-state下的击穿,也就是Gate为0V的时候,但是有的时候Gate开启下Drain加电压过高也会导致击穿的,我们称之为 On-state击穿。

这种情况尤其喜欢发生在Gate较低电压时,或者管子刚刚开启时,而且几乎都是NMOS。所以我们通常WAT也会测试BVON。

2

如何处理mos管小电流发热严重情况?

mos管,做电源设计,或者做驱动方面的电路,难免要用到MOS管。MOS管有很多种类,也有很多作用。做电源或者驱动的使用,当然就是用它的开关作用。

无论N型或者P型MOS管,其工作原理本质是一样的。MOS管是由加在输入端栅极的电压来控制输出端漏极的电流。

MOS管是压控器件它通过加在栅极上的电压控制器件的特性,不会发生像三极管做开关时的因基极电流引起的电荷存储效应,因此在开关应用中,MOS管的开关速度应该比三极管快。

我们经常看MOS管的PDF参数,MOS管制造商采用RDS(ON)参数来定义导通阻抗,对开关应用来说,RDS(ON)也是最重要的器件特性。

数据手册定义RDS(ON)与栅极(或驱动)电压VGS以及流经开关的电流有关,但对于充分的栅极驱动,RDS(ON)是一个相对静态参数。一直处于导通的MOS管很容易发热。另外,慢慢升高的结温也会导致RDS(ON)的增加。

MOS管数据手册规定了热阻抗参数,其定义为MOS管封装的半导体结散热能力。RθJC的最简单的定义是结到管壳的热阻抗。

1、mos管小电流发热的原因:

1)电路设计的问题:就是让MOS管工作在线性的工作状态,而不是在开关状态,这也是导致MOS管发热的一个原因。

如果N-MOS做开关,G级电压要比电源高几V,才能完全导通,P-MOS则相反。没有完全打开而压降过大造成功率消耗,等效直流阻抗比较大,压降增大,所以U*I也增大,损耗就意味着发热。这是设计电路的最忌讳的错误。

2)频率太高:主要是有时过分追求体积,导致频率提高,MOS管上的损耗增大了,所以发热也加大了。

3)没有做好足够的散热设计:电流太高,MOS管标称的电流值,一般需要良好的散热才能达到。所以ID小于最大电流,也可能发热严重,需要足够的辅助散热片。

4)MOS管的选型有误:对功率判断有误,MOS管内阻没有充分考虑,导致开关阻抗增大。

2、mos管小电流发热严重怎么解决:

0做好MOS管的散热设计,添加足够多的辅助散热片。

贴散热胶。

3

MOS管为什么可以防止电源反接?

电源反接,会给电路造成损坏,不过,电源反接是不可避免的。所以,我们就需要给电路中加入保护电路,达到即使接反电源,也不会损坏的目的。

一般可以使用在电源的正极串入一个二极管解决,不过,由于二极管有压降,会给电路造成不必要的损耗,尤其是电池供电场合,本来电池电压就3.7V,你就用二极管降了0.6V,使得电池使用时间大减。

MOS管防反接,好处就是压降小,小到几乎可以忽略不计。现在的MOS管可以做到几个毫欧的内阻,假设是6.5毫欧,通过的电流为1A(这个电流已经很大了),在他上面的压降只有6.5毫伏。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭