激光二极管的结构和工作原理及其与LED的区别
扫描二维码
随时随地手机看文章
激光二极管包括单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。
一是处于高能态的粒子自发向低能态跃迁,称之为自发辐射;二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射;三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。
即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为粒子数反转),才能发出激光。
产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得粒子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了粒子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件:P1P2exp(2G - 2A) ≥ 1(P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф =2qπ q=1、2、3、4。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ,上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。
一、激光二极管的原理
激光二极管基于受激辐射发光,能发射出直径微小、高度定向和相干性强的光束。1962年,科学家Robert N. Hall和Nick Holonyak Jr.成功发明了激光二极管。得益于在活性区的电流“注入”,这些设备实现了“激光”条件,并成功辐射出光子。激光二极管符号表示中有别于普通PN结二极管的地方在于它包含了一个未掺杂的本征活性区域。
二、激光二极管的结构和工作原理
激光二极管的工作原理依赖其内部的PIN结构——两端分别是P型与N型半导体,中间是未掺杂的本征半导体。当正向偏压时,电子和空穴被注入活性区,电子从导电带跳至价带与空穴复合,释放出光子。
这个过程涉及三种辐射机制:吸收、自发发射和受激发射。自发发射是自然复合产生的发光,而受激发射则是电子在光子作用下从更高能级跃迁至更低能级时产生的,每个入射光子能诱导出两个同相位、同波长的光子。
三、激光二极管的应用
激光二极管广泛应用于电力电子领域。在光电场景如激光打印、光盘读写、光纤通信以及自动化传感器中起着不可或缺的作用。此外,它们在电力器件控制(如IGBT与MOSFET的驱动电路)、EDS及无掩膜光刻等半导体制造技术中发挥着关键性能。
四、优势与不足
激光二极管提供了810至1064纳米波长范围的丰富选择,同时具备快速响应、高量子效率等多项优势。尽管激光二极管存在对温度和光反馈敏感、高增益电流下带隙收缩以及与LED相比成本较高等局限,但其整体性能令其在高精度应用中显著优于LED。
五、激光二极管与LED的区别
不同于LED依靠自发发射,激光二极管通过电流和电压引发受激发射,产生的光输出既均匀又相干。在激光二极管的辅助下,实现了精细控制的光学应用,而LED则适用于一般照明及指示装置。
通过对激光二极管的技术深入分析可知,它在现代电力电子和通信领域中的作用日益重要。虽然激光二极管的成本相对高昂,但在高端精密的应用中,其性能优势明显,预计在未来的光电子行业中将持续发挥巨大潜力。