当前位置:首页 > 电源 > 电源
[导读]‌IQ正交调制器‌是一种将基带信号调制到射频载波的设备,主要用于无线通信系统中。它的核心功能是将基带信号(即I和Q信号)与载波进行正交调制,生成所需的射频信号。

‌IQ正交调制器‌是一种将基带信号调制到射频载波的设备,主要用于无线通信系统中。它的核心功能是将基带信号(即I和Q信号)与载波进行正交调制,生成所需的射频信号。

IQ正交调制器的基本原理

IQ正交调制器主要由两部分组成:IQ基带发生器和IQ混频器。IQ基带发生器产生I和Q信号,这两个信号是相位相差90度的正弦波,分别代表“同相”(I)和“正交”(Q)。混频器则将这些信号与载波信号进行混合,生成最终的射频信号。通过改变I和Q信号的振幅,可以实现不同的调制方式,如调幅、调频或调相‌12。

IQ正交调制器的应用场景

IQ正交调制器广泛应用于各种无线通信系统中,特别是在直接上变频(零中频调制)中表现优异。它被广泛应用于蜂窝移动通信、WLAN、UWB超通信系统、蓝牙、GPS等系统中。由于直接上变频发射机结构简单,省去了第二本振、中频滤波器和混频器,从而降低了成本、体积和功耗‌2。

IQ正交调制器的优缺点

‌优点‌:

‌高相位精度‌:能够提供较高的相位精度和幅度平衡,适合高精度的通信需求。

‌简化结构‌:在直接上变频应用中,简化了发射机结构,降低了成本和功耗。

‌缺点‌:

‌非理想因素‌:由于非理想因素(如本振泄漏和边带抑制问题),输出信号可能产生失真,影响通信质量。为了确保通信质量,需要对IQ调制器的射频性能进行全面测试‌2。

通常有:

· 直接上变频(又称:零中频调制)

· 间接上变频(又称:两级变频或超外差式)

· 数字中频发射机

标准的IQ正交调制电路的结构非常简单,它分为IQ 基带发生器和IQ 混频器两大部分。不管是调幅,调频或是调相信号,只需要通过改变不同的IQ 基带信号就可以实现。而IQ 调制器的作用是将基带IQ 信号搬移到载波上。正交调制器通常能实现较高的相位精度与幅度平衡,非常适合于通信系统中的直接上变频(零中频调制),因此广泛用于直接上变频发射机,例如蜂窝移动通信、WLAN、UWB超通信系统、蓝牙、GPS 等系统中,是现代无线通信系统中的关键元件。

下图1所示是正交调制器的框图,如果用于直接上变频发射机,省去了第二本振,中频滤波器和混频器,使发射机系统结构简化,从而降低了成本、体积和功耗。


无线通信系统中的IQ正交调制器的基本原理

图1. 正交调制器原理框图

正交调制器的固有缺点在于本振泄漏和边带抑制(本振泄漏主要是由IQ信号的直流偏置,IQ差分信号的不平衡性以及本振和射频的隔离指标差等因素造成的)。理想情况下,正交调制器只是完成基带频谱的搬移和叠加,不会造成信号的带外频谱增生或是产生带内失真。正交调制器会不可避免的存在非理想因素,使得输出信号产生各种失真,影响通信质量,所以正交调制器的射频性能需要进行全方面的测试。

测试IQ调制器的镜像抑制一般采用单边带CW信号,输入的I信号:sinω0t,Q信号:cos⁡ω0t与正交本振混频以后可得调制信号s(t),其中ω0一般为扫频信号,从DC附近开始到几十或几百兆:

s(t)=sinω0t∙cosωct-cosω0t∙ sinωc t

=sin⁡(ωc-ω0 )t

如果IQ调制器完全理想,只会在(ωc-ω0)处产生一个单边带信号(单边带CW信号),但是由于调制器的不理想性,也会在(ωc+ω0)处产生一个镜像信号。与此同时在本振频率ωc位置也会有一个信号,称为本振泄漏。本振和镜像信号的抑制度是IQ调制器的重要指标。图2是一个典型的IQ调制器的单边带CW输出结果,载波为10G,IQ信号为30MHz,测试得到镜像信号的抑制度为42dB。此时采用任意波形发生器产生两路30MHz的sin和cos信号,分别提供给IQ调制器作为基带输入,也可以使用带有双源选件的矢网的两个通道输出相位差恒定为90度的CW连续波,用矢网的另一个好处就是,可以实现扫频模式下的本振和镜像抑制度的测试。


无线通信系统中的IQ正交调制器的基本原理

图2. 频谱仪测试矢量信号源的IQ调制镜像抑制度

2. 测试任务

本文采用的正交调制器待测件是来自ANALOG DEVICES的ADL5371,它的工作频率范围:500 MHz~1.5 GHz。下图3所示,该器件I+,I-,Q+,Q-端口分别为IQ双路差分基带输入,LO为单端本振输入(LOIN接匹配负载)。基带输入需要500mV的偏置电压。射频输出VOUT为单端50Ω。


无线通信系统中的IQ正交调制器的基本原理

图3. 正交调制器ADL5371 pin(左)和ADL5371的评估板

测试时,ADL5371的评估板需要输入0dBm、900MHz的单端本振。IQ双路差分基带输入的正弦波的峰峰值为1.4V,频率为1MHz,并且带有500mV的偏置电压。

测试项目包括:输出功率;输出1dB压缩点;载波馈通;边带抑制;正交相位误差;IQ幅度不平衡性;二次、三次谐波抑制;TOI;基带到射频幅频响应。

3. 测试平台

测试平台的核心是矢量信号源和信号与频谱分析仪,如下图所示。还包括直流电源和万用表(电压测量)。ADL5371安装在评估板Q MOD上。矢量信号源通常配备了差分IQ输出,可以将基带IQ以差分信号的形式从后面板的四个BNC接头输出。


无线通信系统中的IQ正交调制器的基本原理

图4. 正交调制器测试平台

4. 测试结果

4.1 信号源基本设置

4.2~4.4的测试项目中信号源设置如下图所示,基带产生1MHz的正弦波,基带IQ输出采用差分模式,输出电压峰值为0.7V,IQ端口偏置电压500mV。


无线通信系统中的IQ正交调制器的基本原理

图5. 信号源SMU200A基本设置

4.2 输出功率

从图6的标注M1看出,输出功率7.86dBm


无线通信系统中的IQ正交调制器的基本原理

图6. 输出功率测试结果

4.3 本振泄漏和边带抑制、二次谐波和三次谐波

从图7中D3,D2看出,边带抑制-51.5dBc,本振泄漏-57dBc

从图7中D4,D1看出,二次谐波抑制度为-72dB,三次谐波抑制度为-53dB。


无线通信系统中的IQ正交调制器的基本原理

图7. 输出功率测试结果本振泄漏和边带抑制、二次谐波和三次谐波测量结果

4.4 1dB压缩点

按1dB的步进增大差分IQ输出的电压,在频谱仪上看到输出功率的增加值小于1dB时就测出了1dB压缩点,从下图8中看出,输出压缩点为13.8dBm,在信号源上读取对应的输入IQ功率为1.567V。


无线通信系统中的IQ正交调制器的基本原理

图8. 1dB压缩点测量结果

4.5 IQ幅度不平衡性和正交相位误差

信号源产生1M符号速率的QPSK,IQ输出的设置与前面的测试项目相同。使用频谱仪的矢量信号分析(VSA)解调,下图9测试结果显示正交相位误差为0.08度,IQ幅度不平衡性为0.04dB。


无线通信系统中的IQ正交调制器的基本原理

图9. IQ不理想特性测量结果

4.6 TOI

信号源标配的Multi-Carrier功能产生3.5MHz和4.5MHz的双音IQ信号,IQ输出的设置与前面的测试项目相同,调整IQ输入电压直到双音信号输出功率到1.6dBm。利用频谱仪自带的TOI功能测得TOI为27.7dBm。


无线通信系统中的IQ正交调制器的基本原理

图10. TOI测量结果

4.7 基带到射频幅频响应

进行幅频响应测试需要用计算机程控信号源步进改变基带频偏,频谱仪的测量迹线采用最大保持功能。从图11看出,从900MHz到940MHz,该正交调制器评估板的幅频响应最大值7.8dBm,最小值7.1dBm。需要特别注意的是,上述的幅频响应测量结果是对ADL5371评估板的测量结果,如果要得到ADL5371芯片的1dB和0.1dB带宽,还需对评估板电路的电路特性进行校准并修正。


无线通信系统中的IQ正交调制器的基本原理


无线通信系统中的IQ正交调制器的基本原理

图11. 幅频响应测量结果,采用SMU200A测量(上)与AFQ100B测量(下)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭