当前位置:首页 > 技术学院 > 技术前线
[导读]PFC就是功率因数校正的意思,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。

为了减少谐波对交流电网的污染,国内外都制订了限制电流谐波的有关标准,因此,功率因数校正(PFC)技术已成为电力电子领域中的研究热点。随着电力质量标准的日益严格,PFC变换器被越来越多地应用于开关电源、变频调速器和荧光灯交流电子镇流器中。近几年来,随着相关技术和各种控制策略的发展,PFC技术已得到大量研究。PFC电路根据工作方式可分为两大类,即无源PFC电路和有源PFC电路。有源PFC电路根据变换级数可以分为单级PFC电路和多级PFC电路。近年来,单级PFC电路得到广泛的关注,对它的研究也越来越热了,但是,在工业上它还没有得到广泛应用。

PFC就是功率因数校正的意思,主要用来表征电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。

PC电源采用传统的桥式整流、电容滤波电路会使AC输入电流产生严重的波形畸变,向电网注入大量的高次谐波,因此网侧的功率因数不高,仅有0.6左右,并对电网和其它电气设备造成严重谐波污染与干扰。早在80年代初,人们已对这类装置产生的高次谐波电流所造成的危害引起了关注。1982年,国际电工委员会制订了IEC55-2限制高次谐波的规范(后来的修订规范是IEC1000-3-2),促使众多的电力电子技术工作者开始了对谐波滤波和功率因数校正(PFC)技术的研究。电子电源产品中引入PFC电路,就可以大大提高对电能的利用效率。

PFC有两种,一种是无源PFC(也称被动式PFC),一种是有源PFC(也称主动式PFC)。无源PFC一般采用电感补偿方法使交流输入的基波电流与电压之间相位差减小来提高功率因数,但无源PFC的功率因数不是很高,只能达到0.7~0.8;有源PFC由电感电容及电子元器件组成,体积小,可以达到很高的功率因数,但成本要高出无源PFC一些。

有源PFC电路中往往采用高集成度的IC,采用有源PFC电路的PC电源,至少具有以下特点:

1)输入电压可以从90V到270V;

2)高于0.99的线路功率因数,并具有低损耗和高可靠等优点;

3)IC的PFC还可用作辅助电源,因此在使用有源PFC电路中,往往不需要待机变压器;

4)输出不随输入电压波动变化,因此可获得高度稳定的输出电压;

5)有源PFC输出DC电压纹波很小,且呈100Hz/120Hz(工频2倍)的正弦波,因此采用有源PFC的电源不需要采用很大容量的滤波电容。

在上世纪80年代起,用电器具大量的采用效率高的开关电源,由于开关电源都是在整流后用一个大容量的滤波电容,使该用电器具的负载特性呈现容性,这就造成了交流220V在对该用电器具供电时,由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通。虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。

带PFC的开关电源作用介绍

PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。带PFC的开关电源成本也相对高一些。

开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。

被动式PFC一般分“电感补偿式”和“填谷电路式(Valley Fill Circuit)”   “电感补偿方法”是使交流输入的基波电流与电压之间相位差减小来提高功率因数,被动式PFC包括静音式被动PFC和非静音式被动PFC。被动式PFC的功率因数只能达到0.7~0.8,它一般在高压滤波电容附近。

“填谷电路式”属于一种新型无源功率因数校正电路,其特点是利用整流桥后面的填谷电路来大幅度增加整流管的导通角,通过填平谷点,使输入电流从尖峰脉冲变为接近于正弦波的波形,将功率因数提高到0.9左右,显著降低总谐波失真。与传统的电感式无源功率因数校正电路相比,其优点是电路简单,功率因数补偿效果显著,并且在输入电路中不需要使用体积大重量沉的大电感器。

而主动式PFC则由电感电容及电子元器件组成,体积小、通过专用IC去调整电流的波形,对电流电压间的相位差进行补偿。主动式PFC可以达到较高的功率因数──通常可达98%以上,但成本也相对较高。此外,主动式PFC还可用作辅助电源,因此在使用主动式PFC电路中,往往不需要待机变压器,而且主动式PFC输出直流电压的纹波很小,这种电源不必采用很大容量的滤波电容

影响PF的并非是某个元器件,传统定义的相位差只是一种表现形式,而电容补偿又能补偿回来,这说明并非电感和电容是罪魁祸首,所以并不是某个元器件的问题,只是把问题放大了,即使在没有电感和电容的负载里无中生有找到了“原因”,就是半导体整流二极管的谐波问题,再无限放大,所以最后大家都不知道PF是什么了,其实也就是三人成虎罢了,电网需要无功功率的说法已经被打破了,99.9%的PF电源早已诞生,基本也就证明了电网运行并不需要所谓的“无功功率”,必须正视PF的原因才能解决PF的问题,所以无法回答你如何去提高PF值。原理上用电阻(PF=1)去加热转换成电能,PF恒定等于1,可见这是转换的过程,并非负载的原因,当然这个转换其实也是负载,所以分析问题要实事求是,更需要数据来证明,并不是简单的推理,无功功率是过去人为增加的定义,事实并没有证明无功功率的机理和数据,只是把理想值(视在功率)与负载消耗的功率(有功功率)的差值人为定义为无功功率,功率因数相应就产生了,其实是在人为的无功功率基础上产生的,也就是一种推理。

通常,通过以下几个方面来判断一个功率因数校正拓扑的优劣:

——功率因数的高低;

——输入电流波形畸变的大小;

——效率和功率密度的高低;

——开关管应力的大小。

单级功率因数校正将PFC级和DC/DC级组合在一起,同时实现对输入电流的整形和对输出电压的调节,但与两级方案相比,它只调节输出电压,保证输出电压的稳定,而对输入电流没有进行调节,让输入电流自动跟踪输入电压,因此,单级PFC电路的效果比较差。本文根据现在国际上的电流谐波标准,对单级PFC电路在工业上能否被广泛应用进行了分析。

超快速计算L6562的单级PFC。

单级PFC的特点

优点:

1: PF值较高,可达0.95以上

2: 电路简单,成本低,初级无电解电容

3: 功率密度高,相对体积小

缺点:

1: 100Hz工频纹波大,不适用于低电压输出

2: MOS管承受应力大

3: 由于无电解浪涌难过

4: 做LED驱动电源时频闪问题不好调

5: 保持时间短

6: THD大于10%

管脚号管脚名称功能描述

1 INV 误差放大器的倒相输入。推进转换器的输出应该分配2.5V给INV管脚。

2 EA_OUT 误差放大器的输出管脚。此管脚和INV管脚之间连接一个反馈补偿网络。

3 MULT 乘法器输入管脚。全幅的交流电压通过一个电阻分压器提供正弦波参考电压给MULT管脚。

4 CS PWM比较器输入管脚MOSFET管电流经过一个电阻后,转变为电压提供给CS管脚。内置的R/C滤波器可以抑制任何高频噪声。

5 Idet 零电流检测输入管脚。检测升压电感上的磁感应电压,实现TM工作模式,负边缘触发开通MOS管

6 GND 接地管脚。

7 OUT 阈值驱动器输出管脚。这个推挽输出级的峰值电流500mA可以驱动功率MOSFET管。

8 VCC 驱动器和控制电路的工作电压。

总结PFC的开关电源的性能特点

基本原理图

总结PFC的开关电源的性能特点

单级PFC应用原理图

基本原理

通过反激变压器的初级电感作为PFC电感来实现功率因素调制.

通过INV脚来实现次级输出反馈控制

各引脚设计及其功能实现:

1 INV 误差放大器的倒相输入。推进转换器的输出应该分配2.5V给INV管脚。

总结PFC的开关电源的性能特点

2 EA_OUT 误差放大器的输出管脚。此管脚和INV管脚之间连接一个反馈补偿网络。

总结PFC的开关电源的性能特点

3 MULT 乘法器输入管脚。全幅的交流电压通过一个电阻分压器提供正弦波参考电压给MULT管脚。

总结PFC的开关电源的性能特点

4 CS PWM比较器输入管脚MOSFET管电流经过一个电阻后,转变为电压提供给CS管脚。内置的R/C滤波器可以抑制任何高频噪声。

总结PFC的开关电源的性能特点

5 Idet 零电流检测输入管脚。检测升压电感上的磁感应电压,实现TM工作模式,负边缘触发开通MOS管

总结PFC的开关电源的性能特点

6 GND 接地管脚。

7 OUT 阈值驱动器输出管脚。这个推挽输出级的峰值电流500mA可以驱动功率MOSFET管。

总结PFC的开关电源的性能特点

8 VCC 驱动器和控制电路的工作电压。

总结PFC的开关电源的性能特点

45W单级PFC 电源主要元件的选择:

电源参数:Po=45W,n=0.88,PF=0.95,Vo=65V,Io=0.7A 恒流

变压器:选PQ2625

? Pin=Po/n=45/0.88=51W

? Irms=Pin/Vrms=51/85=0.6A

? Ipk=2^0.5*Irms=1.414*0.6=0.85A

? ILpk=2*Irms/D=2*0.85/0.48=3.54A

(假设D=0.48)

? Lp=Vindc*Tonmax/ILpk=120*0.48*25/3.5=400uH

?Np=(Lp×ILpk)/(Bm×Ae)=400*3.54/(0.25*119)=48T(选PQ2625磁心,Ae=119 mm^2 Bmax=0.25)

? Ns=Np*Vo*(1-D)/(Vindc*D)=48*75*0.52/(120*0.48)=33T

? Naux=11T(输出恒流范围满足40V-70V,Vcc供电最大23V,最小12V)

根据变压器骨架宽度和电流密度,变压器参数设计为:

总结PFC的开关电源的性能特点

MOS管:

Vdsmax=Vindcmax+Vo*Nps+Vspike=380+75*1.45+100=588V ILpk=3.54A

按电压85%的降额,电流40%的降额,选择MOS管为8A800V

输出二极管:

Vrrmax=Vindcmax/Nps+Vo+Vspike=380/1.45+75+50=387V Io=0.7A

这里我们选5A/400V的超快二极管SF56G

1:反激单级PFC的重点部分:PF值的控制和次级反馈相互关联。

2:COMP脚负反馈网络的调试

3:L6562做单级PFC时,开环不受控制。

4:输出纹波的控制,尽可能地加大输出电容

5:输出检测信号要加必要的滤波电路


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭