一文讲解什么是运算放大器
扫描二维码
随时随地手机看文章
运算放大器(Operational Amplifier,简称OP、OPA、OPAMP、运放)是具有很高放大倍数的电路单元,是模拟电子电路的基本组成部分之一。由于早期应用于模拟计算机中,用以实现数学运算,如加、减、微分、积分等,故得名“运算放大器”。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,大部分的运放是以单芯片的形式存在,并广泛应用于电子行业中。
运算放大器内部包含多级放大电路,其输入级通常采用差分放大电路,具有高输入电阻和抑制零点漂移能力;中间级主要进行电压放大,具有高电压放大倍数,一般由共射极放大电路构成;输出级与负载相连,具有带载能力强、低输出电阻的特点。此外,运算放大器还具有高增益、低漂移、深度负反馈等特性,这些特性使得运算放大器在信号调理、滤波、信号比较、模拟计算等多种电子电路系统中得到广泛应用。
运算放大器的工作原理
1. 基本结构
运算放大器的基本结构包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。在实际应用中,运算放大器通常与外部反馈网络相结合,形成特定的功能模块。
2. 高增益特性
运算放大器能够提供非常高的电压增益,即输出与输入之间的电压比值很大,通常是几千到几十万。这种高增益特性使得运算放大器能够对微弱的输入信号进行放大,从而满足各种应用需求。
3. 差分输入与虚短特性
运算放大器具有两个输入端:同相输入端(+)和反相输入端(-)。这两个输入端对输入信号的微小变化非常敏感,且希望两个输入端的电压差尽可能为零,即所谓的“虚短”(virtual short)。在没有外部反馈的情况下,运算放大器会试图使其两个输入端的电压相等。
4. 深度负反馈
通过外部电路连接可以引入负反馈,使运放的实际工作状态接近理想的线性区,提高精度和稳定性。同时,负反馈还可以根据需要配置成各种功能电路,如放大、加法、减法、积分、微分等运算电路。在深度负反馈条件下,运放的行为往往取决于反馈网络,而不是其本身的开环增益。
5. 工作模式
运算放大器的工作模式主要包括反相放大模式和非反相放大模式。
反相放大模式 :在这种模式下,运放的输出信号与反相输入端信号相反,并按一定的比例放大。反相放大器电路具有放大输入信号和反相输出的功能。其工作原理是通过负反馈技术,将输出信号的一部分返回到反相输入端,从而保持输入端的电压差不变。此时,增益由反馈电阻和输入电阻的比值决定。
非反相放大模式 :在这种模式下,运放的输出信号与同相输入端信号相同,并按一定的比例放大。非反相放大器电路与反相放大电路的主要区别在于输入信号加在同相输入端上。同样地,非反相放大器也采用负反馈技术来保持输入端的电压差为零,并通过调整反馈电阻和输入电阻的比值来改变增益。
6. 理想特性
一个理想的运算放大器应具备以下特性:
无限大的输入阻抗:使得输入端对前级电路的影响几乎为零。
等于零的输出阻抗:使得输出端能够驱动各种负载而不影响输出电压。
无限大的开回路增益:即在没有反馈的情况下,输出电压与输入电压之间的比值无限大。
无限大的共模排斥比:即运算放大器对共模信号的抑制能力非常强。
无限大的频宽:即运算放大器能够处理各种频率的信号而不失真。
然而,在实际应用中,运算放大器的这些特性都是有限的,但通过合理的设计和选择,可以使其接近理想状态以满足应用需求。
运算放大器的差分输入包括一个正相输入电压与的反相输入电压,理想的运算放大器只放大两个电压的差,这就是所谓的差模输入电压。运算放大器的输出电压由下式给出:
一个理想的运算放大器通常应具备下列特性:
1)无限大的开环增益(Ado= +∞):理想运算放大器的一个重要性质就是开环的状态下,输入端的差动信号有无限大的电压增益,这个特性使得运算放大器在实际应用时十分适合加上负反馈组态。
2)无限大的输入阻抗(Zin/Rin = ∞):理想的运算放大器输入端不容许任何电流流入,即上图中的V+与V-两端点的电流信号恒为零,亦即输入阻抗无限大。
3)零输入失调电压
4)无限大的带宽(BW= ∞)且零相移与无穷大的摆率:理想的运算放大器对于任何频率的输入信号都将以一样的差动增益放大之,不因为信号频率的改变而改变。
5)零输出阻抗(Zout/Rout = ∞):理想运算放大器的输出端是一个完美的电压源,无论流至放大器负载的电流如何变化,放大器的输出电压恒为一定值,亦即输出阻抗为零。
6)零噪声
7)无限大的共模抑制比(CMRR = ∞):理想运算放大器只能对V+与V-两端点电压的差值有反应,即只放大(V+ - V-)的部分。对于两输入信号的相同的部分(即共模信号)将完全忽略不计。
8)无限大的电源电压抑制比
所有这些理想化都不可能完全实现。运算放大器模型中可以使用等效电阻和电容来模拟真正的运算放大器的非无限或非零参数。设计者这样就可以将这些影响考虑进最终电路的整体性能中。一些参数对最终设计的影响可能可以忽略不计,但其他那些实际制约最终性能的参数必须计算。
常见的应用设计
(1)反相闭环放大器
(5)微分电路
上图是一种微分器电路。在理想运算放大器条件下,开环增益为无限大,反向输入端的电压与同向端相等,因为输入阻抗无限大,通过R1的电流与通过C1的电流相等。