当前位置:首页 > 模拟 > 模拟技术
[导读]混合信号示波器这个称呼沿袭了原HP(今Agilent)在1996年推出54645D时的说法,当时混合信号mcu正在兴起,HP正是看好这个机会才推出了混合示波器。

混合信号示波器,简称MSO(Mixed-signaloscilloscopes)是用于逻辑分析功能的设备。混合信号示波器这个称呼沿袭了原HP(今Agilent)在1996年推出54645D时的说法,当时混合信号mcu正在兴起,HP正是看好这个机会才推出了混合示波器,当时HP的宣传是,首先它是一台示波器,其次还能添加逻辑分析功能。

‌混合信号示波器(Mixed-signal oscilloscope,简称MSO)是一种结合了数字存储示波器(DSO)和逻辑分析仪功能的测试仪器‌。它能够在同一显示屏幕上同时显示多个时间对齐的模拟和数字波形,从而方便设计师在调试混合信号嵌入式设计时进行综合分析和故障排查‌12。

混合信号示波器的主要功能和应用场景

混合信号示波器的主要功能包括:

‌模拟和数字通道的测量‌:能够同时测量和分析模拟信号和数字信号,适用于基于微控制器(MCU)、现场可编程门阵列(FPGA)和数字信号处理器(DSP)的嵌入式设计。

‌自动定标、触发释抑、无限余辉以及探头/通道偏移校正‌:这些功能使得混合信号示波器在测试和调试过程中更加灵活和准确。

‌混合信号触发‌:能够根据模拟或数字信号触发,帮助设计师捕捉到关键的信号变化,从而更好地理解系统的行为‌23。

混合信号示波器的技术指标

在使用混合信号示波器进行测试时,关键的技术指标包括:

‌通道数‌:根据设计需求选择合适的通道数,通常需要足够多的通道来覆盖系统中的所有信号。

‌带宽和采样率‌:这些参数决定了示波器能够测量的信号频率范围和精度,对于高频率的信号测试尤为重要。

‌混合信号触发类型‌:选择合适的触发类型可以提高测试的效率和准确性,常见的触发类型包括边缘触发、脉冲宽度触发等‌2。

”今天基于微控制器(MCU)和数字信号处理器(DSP)的嵌入式设计一般都会同时带 有模拟信号和数字信号成分。传统上,设计师是用示波器和逻辑分析仪进行测试和调 试;而现在,新一类测量工具——混合信号示波器(MSO)——已经能够提供更好的 方法来调试这些 MCU 基和 DSP 基混合信号嵌入式设计。虽然 混合信号示波器MSO 在市场上出现已将近 20 年,但大多数工程师却从未接触过这种仪器,许 多工程师对它们的好处和使用方式存在着误解。许多示波器厂商都推出了融有模拟和 数字时间相关测量能力的混合型时域仪器,但您一定要清楚这些仪器的差别,确切了 解它们能做什么和不能做什么。 本文首先从混合信号示波器的定义开始,简要介绍了 MSO 所适应的主要应用领域; 讨论在典型的基于 MCU/DSP 设计中,为有效检测各种模拟和数字 I/O 信号所需要的 通道数、带宽和采样率;还探讨了为有效测试和调试嵌入式设计,您所要求于 MSO 的各种混合信号触发类型;所选用的混合信号嵌入式设计实例是基于 16bit 宽指令集 微控制器(Microchip PIC18)。本文还讲述了使用 MSO 验证信号质量时典型的调试 方法。

什么是混合信号示波器(MSO)?

MSO 是一种混合式测试仪器,它将数字存储示波器(DSO)的所有测量能力(包括自动定标, 触发释抑,模拟和数字通道的无限余辉以及探头 / 通道偏移校正)与逻辑分析仪的部分测 量能力集成到单台仪器中。有了 MSO,您就能在同一个显示器上看到如图 1 所示在时间 上对准的模拟和数字波形。虽然 MSO 可能缺少全效逻辑分析仪的许多先进数字测量能力 和庞大的数据采集通道数,但对于今天的许多嵌入式设计调试应用,MSO 仍有一些超过 传统上同时使用示波器和逻辑分析仪的独特优点。

混合信号示波器MSO的主要优点之一是它的使用方式,其操作方法在许多方面与示波器相同。设计和测 试工程师往往会尽量避免使用逻辑分析仪——即使是在需要高效调试复杂设计时——因为 掌握逻辑分析仪的使用方法要花费大量时间。就算工程师了解逻辑分析仪的使用方法,对 特定测量所必须的设置也比设置示波器麻烦得多。此外,逻辑分析仪的先进测量能力也增 加了复杂程度,通常会给今天的许多基于 MCU 和 DSP 设计带来约束。

示波器是研发环境中最常用的测试仪器。所有嵌入式硬件设计师都有用示波器对混合信号 嵌入式设计进行信号质量和定时测量的基本操作知识。但对于监视和测试多个模拟和数字 信号间的重要定时互动,2 通道或 4 通道示波器测量一般是不够用的。而这正是混合信号示波器MSO 的用武之地。

由于 MSO 提供“正好够用”的逻辑分析仪测量能力,而且操作难度没有明显增加,因此 正是调试嵌入式设计的理想工具。如前所述,MSO 的使用方式属示波器类型。事实上, 您可简单地把 MSO 看成是一种多通道示波器,其中的模拟通道提供高垂直分辨率(通常 为 8bit);附加的逻辑 / 数字通道则提供低分辨率(1bit)测量。与松散型的双机方案不同, 高度集成的 MSO 属混合信号测量解决方案。它更便于用户的使用,提供快速的波形更新率, 其操作更像是一台示波器 — 而不像逻辑分析仪。


混合信号示波器的主要功能和应用场景

图 1. Keysight InfiniiVision X 系列混合信号示波器(MSO)

波形更新率是所有示波器的一项重要特性,它直接影响仪器的使用。速度慢和反应迟钝都 会影响正常使用,这对于 DSO 和 MSO 也是同样道理。因此当示波器厂商把逻辑采集通道 置入 DSO 构成 MSO 时,绝不能牺牲波形更新率;否则,传统示波器的使用方式将会受到 影响。混合信号测量方案如果基于双机配置,或者采用 USB 之类的外部通信总线来连接 逻辑接口就会反应迟钝和难以使用。而基于高度集成硬件架构的 MSO 则有远为敏捷的响 应,用起来也容易得多。

如欲深入了解示波器波形更新速率的重要性,请下载本文结尾部分列出的是德科技应用指 南《示波器波形更新速率决定偶发事件捕获能力》。

在购买 MSO 之前的评估过程中,您首先要对各厂家印刷手册和在线资料(技术概览)中 描述的工作特性和测量性能做个比较。这对于评估仪器的可使用性和响应能力具有一定的 参考价值;但唯一最有效的方法还是要亲自上手,进行实际检验。

典型 混合信号示波器MSO测量应用和要求的性能

虽然 MSO 是用于捕获混合信号器件上 — 如模数转换器(ADC)和数模转换器(DAC) — 模拟和数字信号的重要工具,但它们的主要测量应用还包括验证和调试带有嵌入地址 和数据总线的 MCU/DSP 基混合信号设计。图 2 是具有微控制器内核的典型混合信号嵌入 式设计的框图。

尽管人们一般认为微控制器和 DSP 是数字控制和处理器件,但今天绝大多数 MCU 和 DSP 实际上是包含有嵌入模拟电路的混合信号器件。因此,需要检测和验证系统中的这些 信号,例如模拟 I/O、数字并行 I/O 端口,以及 I2 C 和 SPI 这类数字串行通信总线。

注意,图 2 中的框图没有示出任何地址或数据总线信号。这是因为:大多数 MCU 和 DSP 具有包括嵌入存储器(RAM 和 ROM)的内部总线结构。

由于今天的 混合信号示波器MSO 一般有 16 个数字采集通道,因此一些工程师错误地认为 MSO 只能受限 于 8bit 的处理应用(8bit 数据+ 8bit 地址 = 8 至 16 个通道)。但 MSO 主要用于检测模 拟和数字 I/O,即通常在基于 MCU 和 DSP 设计中能够得到的所有信号。不要尝试把 MSO 中的数字采集通道数与基于内部总线的 MCU 或 DSP 中的处理比特数相关联,因为它们 通常没有关联关系。为检测和验证 8bit、16bit,有时甚至是 32bit 的 MCU/DSP 设计,16 个数字采集通道及 2 个到 4 个模拟采集和触发通道一般是富富有余的。

检测基于外部总线设计(例如基于 32 bit 微处理器计算机)中的并行地址和数据线并非 MSO 的主要测量应用。


混合信号示波器的主要功能和应用场景

图 2. 典型 MCU 基嵌入式设计

如果需要捕获多个地址和数据总线信号,以验证基于外部总线系统中的定时和源码码流, 那么具有状态分析和反汇编能力的逻辑分析仪是更好的测量工具。但假若您同时还需要模 拟信号和或数字信号的模拟特性具有时相关性,那么多家厂商的双机解决方案(示波器+ 逻辑分析仪)就要把示波器波形送入到具有时相关显示的逻辑分析仪中。在您获得这种更 高性能双机测试解决方案的同时,也不得不接受逻辑分析仪更为复杂的操作方式,包括慢 或单次的波形更新率。

但即使是在带有外部存储器器件的 32bit 系统中,具有 16 个逻辑定时通道及 2 个或 4 个 模拟通道的 MSO 对于测量关键定时参数通常也是足够的。图 3 是使用 MSO 在一个 32bit 系统中(IBM PowerPC 405 GP)验证高速存储器器件(SDRAM)建立时间的例子。使用 MSO 的码型触发能力,只需 4 个 MSO 数字通道就能完成对特定读写指令(CS、RAS、 CAS 和 WE)的测量。再用示波器的模拟通道进一步限定在一个高速时钟信号沿上触发, 并在对应特定数据信号(中间的绿色迹线)的 100 MHz 时钟信号上(上面的黄色迹线) 做关键的定时测量,从而得到对该外部存储器器件的测量,测得建立时间为 8 ns。用常规 2 通道或 4 通道 DSO 进行这样的测量是不可能的,而使用与高速示波器相链接的逻辑分 析仪进行这种测量则极为费时。


混合信号示波器的主要功能和应用场景

图 3. 在 32 bit 系统中用 MSO 进行关键的建立时间测量

对于混合信号嵌入式设计中的这类信号完整性测量,MSO 的模拟和数字采集性能要远比 通道数重要。示波器模拟采集性能的最基本指标是带宽和采样率。为进行具有合理精度的 模拟测量,示波器带宽至少应该是所关注信号最高频率成分的五倍。例如,若需要用示波 器模拟通道检测最大转换时钟频率为 200 MHz 的数字信号,为能以合理精度捕获到第 5 次谐波,示波器的模拟带宽应达到 1 GHz。对于实时单次测量,示波器的采样率应是示波 器带宽的 4 倍,或更快。要了解有关示波器带宽和采样率关系的更多情况,请下载阅读是 德科技应用指南“针对您的应用选择适当带宽的示波器”和“评估示波器采样率与采样保 真度的关系:如何获得最精确的数字测量结果”(将在本文结尾部分列出)。

可惜有些示波器和逻辑分析仪的使用者并未充分认识到 MSO 和逻辑分析仪需要具有怎样 的数字采集性能。混合信号示波器MSO 具有与示波器模拟采集性能相当的数字采集性能是非常重要的。 但这并不意味着它就是高性能示波器和低性能逻辑定时分析仪的简单组合。是德科技推荐 MSO 的数字 / 逻辑采集系统的采样率至少应达到示波器模拟采集通道带宽的两倍。在上 面我们刚刚讨论的例子中,需要用 1 GHz 示波器捕获转换 / 时钟率为 200 MHz 数字信号 的模拟特性,而以合理的定时精度在 MSO 的数字 / 逻辑通道上捕获同样信号,则要求数 字 / 逻辑通道达到 2 GSa/s 的采样率。

当您使用逻辑 / 数字采集通道时,测量分辨率被限制为 ±1 个采样周期。例如,如果您打 算用 200 MHz(周期 = 5ns)的最大跳转 / 时钟率捕获数字信号,每个高或低脉冲可能会 窄到 2.5 ns(假定为 50% 占空比)。这意味着如果您的 MSO 数字采集系统用 2 GSa/s 的 最大速率采样,那么在任一脉冲沿上的定时测量会达到 ±500 ps 的误差,这对于时间差 测量来说就是最坏条件下的 1 ns 峰峰误差,即 2.5 ns 脉冲上的 40% 误差。我们相信无论 是对于 MSO 还是逻辑分析仪,超过 40% 的定时误差都是无法接受的,这正是我们推荐数 字采集通道采样率必须至少为示波器带宽两倍的原因。

除带宽和采样率外,要考虑的另一重要因素是探测带宽;包括模拟和数字系统探测的带宽。 如果您要捕获有超过 500 MHz 重要频率分量的模拟或数字信号,就要在模拟通道上使用 有源探头。同样,数字采集系统的探头也必须能够为数字系统的采样电路提供更高频率的 信号,从而能可靠地捕获到更高频率脉冲序列中的每一个脉冲。

混合信号触发

对于模拟和数字 I/O 信号的特定互动,MSO 的更多采集通道(与 DSO 相比)意味着您现在有了更具针对性的更多触发可能。虽 然 MSO 尚不具备高性能逻辑分析仪的各种复杂触发能力,但也 已远远超过标准 2 通道或 4 通道示波器的有限触发能力。

今天市场上的多数 MSO 和混合信号测量解决方案能至少在一种 电平的并行码型触发条件上触发,有些 MSO 更能提供具有复位 条件的两种电平码型序列触发。但即使您使用相对简单的单电平 码型触发,也会发现各种 MSO 混合信号测量解决方案在触发能 力上存有巨大差异。首先非常重要的一点是,MSO 要能在模拟 和数字输入的组合上触发。对于有些混合信号测量解决方案,由 于其模拟通道和逻辑通道间的信号偏移,它们只能在采集系统的 一边(模拟边或数字边)实施较为可靠的触发。也就是说您只 能在传统的模拟触发条件上,或仅在并行数字条件上触发示波 器——而不能同时在两种条件上触发。MSO 应能提供混合信号 触发能力,并且在触发的模拟通道和数字通道确保精确的时间校 准。我们在本文后面还将给出需要在混合信号条件下进行触发的 另一个例子。在该例中,要求在特定输出相位上对 MCU 控制的 DAC 同步示波器的模拟和数字采集。

对于码型触发的 MSO 混合信号测量解决方案来说,还有一项重 要的考虑因素,就是看它是否带有任何类型的时间限定。除送入, 与 / 或退出触发限定外,码型触发条件还应包括最小时间限定条 件。为说明这一点,一种简单的方法就是:先在不稳定的跳变状态下进行触发;然后再来演示示波器可以用怎样的工具避免这 种不稳定。图 4 是使用 Keysight 6000 X 系列 MSO执行码型 CE (1100 1110)触发的例子。屏幕上方清楚地显示了信号的整体 情况,从中可以看到:总线上 DE 和 E4 之间的 CE 和 EE 是很不 稳定的跳变状态。这应该就是用户最不希望出现的触发情况了。 此时,用户可以使用示波器的时间限定菜单(Qualifier)为触发 设定时间阈值。即:让触发状态必须保持比规定的时间更长或更 短;或者保持在规定的时间范围内,或在规定的时间范围外。


混合信号示波器的主要功能和应用场景

图 4. 没有最小时间限定,示波器在跳变的 / 不稳定的状态下进行触发

为避免在跳变的不稳定的条件下触发,具备最小时间限定能力是 很重要的。当并行数字信号改变状态时,切换过程可能为几乎同 时 — 但并非严格的同时。除了信号在非高非低时的有限上升和 下降速度外,即使是在经过最好设计的系统中,信号间也会有微 小的延迟。这意味着您的系统在信号切换时,始终存在跳变的 / 不稳定的信号条件。如有可能,您当然希望 DSO/MSO 或逻辑 分析仪能避免在这些不稳定条件下触发。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭